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Abstract. We address the problem of semantic querying of relationallbdees
(RDB) modulo knowledge bases using very expressive knayeledpresentation
formalisms, such as full first-order logic or its variousgnaents. We propose to
use a first-order logic (FOL) reasoner for computaapematic answets deduc-
tive queries, with thesubsequent instantiatioof these schematic answers using
a conventional relational DBMS. In this paper, we outline thain idea of this
technique — usingbstractions of databasesdconstrained clausef®r deriving
schematic answers. The proposed method can be directlyvitegular RDB
including legacy databasesvioreover, we propose it as a potential basis for an
efficient Web-scale semantic search technology.

1 Introduction.

1.1 Settings and motivation.

Consider the following scenario. Suppose we havé oglational database (RDB), one
or more expressive knowledge bases (KB) for domains to wihiellata in the RDB is
related (e. g., rule bases in expressive sublanguages eRJl7, 2] and/or ontologies
in OWL). We would like to work witharbitrary (reasonably well designed) RDBs, and,
consequently, the database relations are not assumeetdlgltorrespond to relations
described by the KBs. So, optionally, we may also have somgping between the
RDB schema and the logical language of the domains, i. egiedbdescription of the
relations in the RDB, to link them to the concepts and refetidefined by the KBs.
In these settings, we would like to be able to formulate gselogically and answer
them w. r. t. the KBs and the RDB treated virtually as a coitecbf ground atomic
facts (e. g., by viewing each table row as a separate grouy Ta make this process
efficient, we would like to use the modern RDB technology ashrag possible by
delegating as much work as possible to the RDBMS hostingetaddse

We propose a method to implement this scenario, based orséhefesolution for
incremental transformation of semantic queries into segas of SQL querighat can
be directly evaluated on the RDB, and whose results prouidgvars to the original
queries.

We envisage two main applications for the proposed teclgyolo

YIn principle, our approach can be extended to multiple begmeous and distributed
databases, but in this paper we assume, for simplicityytbatre dealing with just one DB.



Enhancing the interface to conventional relational databaes.Flexible query-
ing of conventional RDBs by non-programmer users is verpl@matic because real-
life enterprise databases often have complex designsing/atcorrect query requires
good understanding of technical details of the DB schemah ag table and attribute
names, foreign key relationships, nullable fields, etc. etraf RDB querying by non-
programmer users is done with preprogrammed parameteyiseries, usually repre-
sented as forms of various kinds.

Even when special methodologies are used, like Query-lapie (see, e. g. [25]),
that allow to hide some of the complexities of SQL and dataldesigns from the
end users, one important inherent limitation remains isdokVhereas mapping some
domain concepts to the RDB schema elements may be easy, reamconcepts may
be much more difficult to map. For example, it is easy to séfesténces of the concept
“student” if there is a table explicitly storing all studenbut if the user wants to extract
a list of all members of a department in a university, he mayehaseparatelyquery
different tables storing information about students, figcand support staff (assuming
that there is no table specifically storing members of akk¢hidnds), and then create a
union of the results.

This example exposes well the root of the problem: mappingestomain concepts
to the data is difficult because it requiraggplication of the domain knowledgi the
example, the involved piece of domain knowledge is the faat $tudents, faculty and
support staff are all department members, and the user baplpit manually to obtain
the required results.

Semantic queryings based on automatic application of domain knowledge for-
malised in the form of, e. g., rules and ontological axiomsthis approach, DB pro-
grammers “semantically document” their DB designs by piimg an explicit mapping
between the RDB schemas and domain terminologies, e. dieifotm of logical ax-
ioms. This alone allows an end user to formulate queriestijrén the terminology
of the domain, without even a slightest idea about how thestiyithg RDBs are struc-
tured?. However, the biggest advantage comes from the fact thavnérag w. r. t. addi-
tional, completely external KBs can be employed to genenatustify some answers,
which makes querying not jusemanticas in [28], but alsaleductive In our current
example, the user can provide, as a part of the query, somén&iBinks the relations
of being a department member, being a student in the depatitete. In some applica-
tion contexts, it is important to be able to use rather exgivekBs for such purposes.
Rule-based KBs and expressive DL ontologies are of a spietékst, especially in
combination.

Web-scale semantic searchThe Semantic Web is accumulating a lot of data in
the form of RDF and OWL assertions referring to various fdiseal vocabularies —
ontologies. In some cases the expressivity of RDF(S) and @valiz not be enough

2 This does not alleviate the need for convenient query iates, but they are outside the scope
of this paper.

% For example, OWL cannot express the following simple rule
hasUncle(X,Y) : — hasParent(X, Z), hasBrother(Z,Y) [3]. OWL also restricts the
arity of predicates t@ and does not directly support functions, thus limiting kiexlge engi-
neering possibilities. More detailed discussion of thisiesis outside the scope of this paper.



and knowledge bases in other formalisms, e. g., RuleML [/R&f [1] or SWRL [3],
have to be used to capture more complex dependencies betlwsexin concepts and
relations, thus making the data descriptions sufficiergipantically rich.

The utility of the Semantic Web data will strongly depend amwteasily and how
efficiently users and agents can query it. Roughly speakiegeed taquery extremely
large volumes of highly distributed data modulo expresgivewledge baseso that
not only direct answers based on the stored data are retuuealso implied answers
that can only be obtained by reasoning.

The approach proposed here may be a part of a solution tortitiggm: large sets of
RDF triples and OWL data descriptions (coming from Semawéb documents) can
be loaded into a relational database and then queried deelyanodulo the relevant
knowledge bases. Different DB layouts can be used, depgratirthe nature of the
data being loaded. For example, if we load an OWL ABox, we Garela separate one-
column table for keeping instances of each class and, sipitgaseparate two-column
table for keeping assertions of each propertpading data descriptions into an RDB is
a linear operation, so it is unlikely to become a real perfamoe bottleneck. Moreover,
we can start producing answers even before the data is fidtydd. So the efficiency of
such a scheme depends mostly on how efficiently the dedumtiggying on the RDB
can be done.

Just like text-based Web search engines do not indiscrielinacan all the acces-
sible documents each time a new query is processed, sersaatich systems cannot
examine all accessible data descriptions in every refret@mpt. Instead, some form
of indexing is necessary that would allow to avoid downlogdilata that is irrelevant
to a specific query, and would focus the processing on thea$etssertions that are
likely to contribute to some answers to the query. We willghloat the core feature of
our approach to deductive querying of RDB — incremental gyjuarriting — suggests a
natural way of semantically indexing distributed data sesr

1.2 Ouitline of the proposed method.

To implement the target scenario, we propose to use a fidgtrtwgic reasoner in com-
bination with a conventional RDBMS, so that the reasonesdbe “smart” part of the
job, and the RDBMS is used for what it is best at — relatively@e processing of large
volumes of relational data by computing table joins. Roygtile reasoner works as
a query preprocessotr. It accepts a semantic query, thearglkaowledge bases and a
semantic mapping for a DB as its input, and generates a {gdpssfinite) number of
expressions which we casichematic answetsthat can be easily converted into SQL
queries. These SQL queries are then evaluated on the DBhveithelp of the RDBMS.
The union of the results for these SQL queries contains alivars to the original de-
ductive query.

This idea can be implemented with a relatively simple aedtitre as shown in Fig-
ure 1. The architecture introduces two main modules — a neagor finding schematic

4 These is the scheme used in all examples throughout the. paper
® In earlier versions of this paper we used the teyemeric answerswhich clashes with the
classification proposed in [9].



solutions and an SQL generator to turn these solutions i Gueries. We also as-
sume that some off-the-shelf RDBMS is used to answer the S@ties. All three com-
ponents (can) work in parallel: while the reasoner sear@treanother schematic an-
swer, the SQL generator can process some previous genkrigbss and the RDBMS
can generate instances for some earlier general soluti@hsanmunicate them to the
user.

Optionally, the reasoner may try to prune the search spachdxking certain con-
straints over the RDB (details will be provided in Section®)ese constraints are also
converted into SQL queries and sent to the RDBMS for evalnail he results of the
evaluation {satis fiable’ or ‘unsatisfiable’) are sent back to the reasoner which can
use the absence of solutions for a constraint as a justdicdir suppressing certain
inferences.

Query answers

general )
O Query solutions SQL queries
AN nora SQL queri
_ eneratof queries
> KBs | Reasonef constraints g for constraintd RDBMS
User/client — [ =-=--- =4 N B et S
code
\\ . _feedback on constraint satisfiability
RDB .
abstraction RDB

Fig. 1. Architecture for deductive query answering

The rest of this paper is structured as follows. In Sectiore2niroduce the method
intuitively. In Section 3 we provide a minimal mathematigadtification of usabil-
ity of our approach by demonstrating soundness and conmgle$eof some standard
resolution-based calculi for rewriting semantic querige sequences of schematic an-
swers. In Section 4 we describe one optimisation specificttermatic answer search.
In Section 6 we briefly discuss how semantic indexing can e dsing data abstrac-
tions, in the context of Web-scale retrieval. In Section S5pravide an algorithm for
converting the logical representation of schematic ansiéo SQL. Finally, Sections 7
and 8 briefly describe some related and future work.

2 Informal method description.

We modelan RDB as a finite set of ground atomic formulas, so that RDEBtames
provide the predicates, and rows are conceptually treategbplications of the predi-
cates to the row elements. In the example below, we have at@btsCourse from

a University DB, keeping information about which studetegwhich course, whose
rows are mapped to a set of facts.



takesCoursg student | course
sl cl — takesCourse(sl,cl)
s2 c2 — takesCourse(s2,c2)
s3 c3 — takesCourse(s3,c3)

Before we proceed with more important things, note that iroat examples in
this paper, the data is assumed to be a relational repréisentd some DL ABoxes.
This is done not to clutter the presentation of the main isdgis RDB schema-related
details. In particular, there is no need for a special RDB&BmMapping because the
RDB tables directly correspond to concepts and propeiltiégars repeating that this
assumption is madenly to simplify the presentation our approach is applicable to
any RDBs, including legacy ones, as long as their designvall@asonable semantic
mapping.

Now, suppose we are trying to answer a query over our RDB deelg e. g.,
modulo some KB.

Naive approach as a starting pointHypothetically, we can explicitlyepresent the
DB as a collection of ground atomic facad use some resolution-based FOL reasoner
supporting query answering, e.g., Vampire [27] or Gand0] [

Even if we have enough memory to load the facts, this apprisditely to be very
inefficient for the following reason. If the RDB is large artselectivity of the query
is not very high, we can expect thetany answers will be obtained with structurally
identical proofs For example, if our DB contains facig-aduateStudent(s1),. ..,
graduateStudent(sio0) (representing some tableaduateStudent which simply
keeps a list of all graduate students), the facts will gige to 100 answers to the query
student(X)8, each having a refutational proof of the form shown in Fig2i@vhere
grStud, takesC, pers andstud abbreviatgraduate Student, takesCourse, person
andstudent, andsk0 is a Skolem function).

This example is intended to demonstrate veasteful reasoning on the per-answer
basisis. Roughly speaking, the required amount of reasoning ikipliad with the
number of answers. Even if the selectivity of the query iy\egh, the reasoner is still
likely to waste a lot of work in unsuccessful attempts repnésd by derivations not
leading to any answers.

Note that these observations are not too specific to the ehafithe reasoning
method. For example, if we used Prolog or a tableaux-basedeBsoner, we would
have a similar picture: the same rule applications woulddréopmed for each answer
Si.

Main idea. The main idea of our proposal is tretswers with similar proofs should
be obtained in bulkMore specifically, we propose tase reasoning to find schematic
answersto queries, which can be later very efficienthstantiated by querying the
RDB via the standard highly optimised RDBMS mechanidieshnically, we propose
to search for the schematic answersrbgisoning on an abstraction of the RDB in
some resolution- and paramodulation-based calc@de® [5, 21]). The abstraction and

5 Query 6 from LUBM [16].



[0] —grCourse(X) V course(X) ; input, grCourse T course

[1] grStud(s;) ; input, DB row

[2] —grStud(X) V grCourse(sk0(X)) ; input, fromgrStud C JtakesC.grCourse
[3] grCourse(sk0(s;)) ; from [1] and [2]

[4] course(sk0(s:)) ; from [0] and [3]

[5] —grStud(X) V takesC(X, sk0(X)) ; input, fromgrStud C JtakesC.grCourse
[6] takesC(si,sk0(s:)) ; from [1] and [5]

[7] —takesC(X,Y)V —course(Y)V ; input, fromstud = pers M JtakesC.course

—pers(X) V stud(X)
[8] —course(sk0(s;)) V —pers(si) V stud(s;) ; from [6] and [7]

[9] —pers(si)V stud(s;) ; from [4] and [8]

[10] —~grStud(X) V pers(X) ; input, grStud C pers

[11] pers(s;) ; from [1] and [10]

[12] stud(s;) ; from [9] and [11]

[13] =stud(X) V answer(X) ; input, queryfind X.stud(X)
[14] answer(s;) ; from [12] and [13]

Fig. 2. Resoluton derivation of the answa&r := s; for the querystud(X).

the reasoning on the abstraction should be organised inasuehy that the obtained
schematic answers can be turned iregular RDBMS queriege.g., SQL queries).

Constrained clauses and table abstractiongo illustrate our main idea, we apply
it to the current example. The claugeStud(X) | grStud(X) is theabstractionof the
relevant part of the RDB, i.e., it represents (generaliagéshe factsgrStud(s1),. . .,
grStud(s100). This is a very important feature of our approach, so we ersiphdhat a
potentially very large set of facts is compactly represgmtith just one clause. The part
before 1" is the ordinary logical content of the clause. What comésrdf” is a special
constraint. These constraints will lrgheritedin all inference rulesinstantiatedwith
the corresponding unifiers amdmbinedvhen they come from different premises, just
like, e. g., ordering or unifiability constraints in paranutation-based theorem proving
[21]. Although our constraints can be used as regular caimstr— that is to identify
redundant inferences by checking the satisfiability of tb&oaiated constraints w.r.t.
the RDB (see Section 4)their main purpose is to record which RDB fact abstractions
contribute to a schematic answer and what conditions on #rmbles of the abstrac-
tions have to be checked when the schematic answer is irtahiso that the obtained
concrete answers are sound

A derivation of a schematic answer for the quetwdent(X), covering all the
concrete solutionX := s1,...,X := s100, iS shown in Figure 3. Note that the last
inference simply merges three identical atomic constsailiso note that we write the
answer literals on the constraint sides of the clauses,usedhey are not intended for
resolution.

SQL generation.Semantically the derived schematic answet | ~answer(X),
grStud(X) means that if some valueis in the tablegraduateStudent, thenz is a
legitimate concrete answer to the query. So, assuminddhigtthe (only) attribute in
the RDB table representing the instancegafduateStudent, the derived schematic



[0] —grCourse(X) V course(X) ; input, KB

[1] grStud(X) | grStud(X) ; DB table abstraction
[2] —grStud(X)V grCourse(sk0(X)) ; input, KB

[3] grCourse(sk0(X)) | grStud(X) ; from [1] and [2]
[4] course(sk0(X)) | grStud(X) ; from [0] and [3]
[5] —grStud(X) V takesC(X, sk0(X)) ; input, KB

[6] takesC(X,sk0(X)) | grStud(X) ; from [1] and [5]
[7] —takesC(X,Y)V —course(Y) V —pers(X) V stud(X) ;input, KB

[8] —course(sk0(X)) V —pers(X) V stud(X) | grStud(X) ;from[6]and [7]
9] —pers(X)V stud(X) | grStud(X), grStud(X) ; from [4] and [8]
[10] —grStud(X) V pers(X) ; input, KB

[11] pers(X) | grStud(X) ; from [1] and [10]
[12] stud(X) | grStud(X), grStud(X), grStud(X) ; from [9] and [11]
[13] =stud(X) | manswer(X) ; query

[14] O | manswer(X), grStud(X), grStud(X), grStud(X) ; from [12] and [13]
[15] O | manswer(X), grStud(X) ; from [14]

Fig. 3. Resolution derivation of some schematic answestard(X).

answerld | manswer(X), grStud(X) can be turned into the following simple SQL

query: SELECTid AS X
FROM graduateStudent
Evaluating this query over the RDB will return all the anssu&r:= sq,..., X := s1go.

Resolution reasoning on a DB abstraction may give risedce than one schematic
answer For exampleld | manswer(X), grStud(X) does not necessarily cover all pos-
sible solutions of the initial query — it only enumeratesdyrate students. If our KB also
postulates that any person taking a course is a student, metovselect all such people
as well. So, suppose that our DB also contains the faeteon(Py ), . . ., person(Pioo),
takesCourse(Py,Ch), ..., takesCourse(Pioo, C100) andcourse(Cy), .. .,
course(Choo) in the corresponding tableg:rson, takesCourse andcourse. These
relations can be represented with the abstraction clapsesn(X) | person(X),
takesCourse(X,Y) | takesCourse(X,Y) andcourse(X) | course(X). Simple rea-
soning with these clauses modulo, say, a KB containing tlee ru
student(P) : — person(P), takesCourse(P,C), course(C) or the DL axiom
person M JtakesC.course C student, produces the schematic answer
O | ~answer(X), person(X), takesCourse(X,Y), course(Y'). Semantically it
means that if tableakesCourse contains a recordstudent = s, course = ¢}, and
tablesperson andcourse contains andc correspondingly, theX := s is a legitimate
concrete answer. Thus, the schematic answer can be turteethan following SQL

query:

SELECT persotid AS X

FROM person, takesCourse, course

WHERE persorid = takesCoursstudent
AND courseid = takesCourseourse

The join conditiongerson.id = takesCourse.student andcourse.id =
takesCourse.course reflect the fact that the corresponding arguments of theipred



cates in the constraint attached to the schematic answeqaed: e.g., the only argu-
ment ofperson, corresponding tperson.id, and the first argument etikesCourse,
corresponding téakesCourse.student, are both the same variahlé.

Incremental query rewriting. In general, resolution over DB abstractions in the
form of constrained clauses may produce many, even infinitedny, schematic an-
swers and, consequently, SQL queries. They are produceolyomee, and the union of
their answers covers the whole set of concrete answers tguidg. If there is only a
finite number of concrete answers, e. g., if the query allogrecrete answers to con-
tain only plain data items from the database, then all caaeneswers are covered after
some finite number of steps. In a sense, the original semauécy is rewritten as a
sequence of SQL queries, so we call our techniqgaeemental query rewriting

Benefits.The main advantage of the proposed scheme isxpeessivity scalability
For example, in applications not requiring terminatiorg &xpressivity of the knowl-
edge representation formalisms is only limited by the esgiuty of the full FOL,
although specialised treatment of various FOL fragmenti&édy to be essential for
good performance. The use of such a powerful logic as FOLeasdimmon platform
also allows easy practical simultaneous use of heterogsremwledge bases, at least
for some data retrieval tasks. In particular, it means tlsatsican freely mix all kinds
of OWL and RDFS ontologies with all kinds of (first-order, nmanic) declarative rule
sets, e. g., in RuleML or SWRL.

It is important that we don’t pay too high a price in terms offpemance, for the
extra expressivity. The method has good data scalabibityghly,the cost of reasoning
is not multiplied by the volume of datllote also that we don’t have to do any static
conversion of the data into a different data model, e. g., Ripfes or OWL ABox —
querying can be done on live databases via the hosting RDBKISthis makes our
method potentially usable with very large databases inlifesgettings.

An additional advantage of our approach is that answerst@astc queries can be
relatively easily given rigorous explanations. Roughlgaking, if we need to explain
a concrete answer, we simply instantiate the derivatioh@torresponding schematic
answer by replacing DB table abstractions with concrete @&y and propagating this
data through the derivation. Thus, we obtain a resolutioofuof the answer, which can
be relatively easily analysed or transformed into a mongtine representation.

3 Soundness and completeness of schematic answer compugati

So far we have only speculated that schematic answer seamdiedmplemented based
on resolution. In this section we are going to put it on a fdrbaeis. We will show that
in the context of FOL without equality some popular res@otbased methods can de-
liver the desired results. In particular, we will charaidera class of resolution-based
calculi that are both sound and complete for query answerigy database abstrac-
tions.

We assume familiarity of the reader with the standard netioinfirst-order logic,
such as terms, formulas, literals and clauses, substitutieic., and some key results,

" Complete methods for efficient schematic answer finding i M@h equalityare yet to be
formulated and proved formally (see the brief discussio8eution 8).



such as the Herbrand’s theorem. Bibliographic referencegrovided for more spe-
cialised concepts and facts.

Deductive queries.In our settings, adeductive querys a triple (DB, K B, ¢},
where (i) the logical representatidnB of some relational database is a set of ground
atomic non-equality formulas, each representing a row iabdetin the database, (ii)
the knowledge bas& B is a finite set of FOL axioms, corresponding to both the do-
main ontologies and semantic RDB schema mappings in ouasoeand (iii) thegoal
¢ of the query is a construct of the for{, ..., X;)(Y1,...,Y,)C, whereC'is a
nonempty clause;, m > 0, {X1,..., Xk, Y1,..., Y} = vars(C), all X; andY; are
pairwise distinct. We calK; distinguished variablesandY; undistinguished variables
of the query. Intuitively, the deductive query representsguest to find allX;, such
that there exist somg;, such thatp(X,Y) is inconsistenwith DB U K B. In other
words, answers to the query refuteather than provefdt This convention is made for
technical convenience. Users of our technology can workrms of positive queries.

Recording literals. In our settings, a clause witlecording literal® is a construct
of the following form:C' | v, whereC' is a regular first-order clause, possibly empty,
and~ is a finite multiset of literals, possibly empty. We will sdat the literals ofy are
recording literals

SemanticallyC' | A1, ..., \, is the same as the regular clauSev \; V ...V
An,» Which will be denoted asem(C | A1, ..., \,). All semantic relations between
Sem(C'| v) and other formulas are transferrediq ~. For example, when we say that
C'| v is implied by something, it means th&em(C | ) is implied, and vice versa.

Regular clauses will be often identified with clauses withpgnrecording parts,
i.e., we will not distinguistC' from C' | (.

We say that a claus€”’ | v' subsumes the claug@ | ~ iff there is a substitutiod
that make<>’6 a submultiset of?, andy’# a submultiset of/’. In this case we will also
say thatC’ | v/ is ageneralisatiorof C | 4.

Concrete and schematic answersie distinguish a special predicate symiadf.

A ground atomic formula@(¢q, ..., ) is a concreteanswer to the deductive query
(DB,KB,(X1,...,Xg)(Y1,...,Y,)C), if the clause”’[ X1 /t1, ..., X} /tx] isincon-
sistentwith DB U K B or, equivalently, the formuldY; ... Y,,—C[X1 /t1, ..., X /tk]

is implied by DB U K B.

We say that a claudé | -y is aschematic answebp a deductive query
(DB,KB,{(X1,...,X)(Y1,...,Y.,)C), if every atomic ground formula of the form
Q(ty,...,tx) implied by DB U {J | v}, is a concrete answer to the query. Every
such concrete answer will be callediastanceof the schematic answer. For example,
Q(s1),...,Q(s100) are instances of the schematic ansilgr—-Q(X), grStud(X) in
the main example in Section 2.

Database abstractionsIn our settings, a finite sebB’ of clauses of the form
p(t1,...,tk) | p(t1,...,tr) is anabstractionof the logical representatiob B of a

8 Recall the partstud(X) of clause[13] from Fig. 2.

° We prefer this to the more general term “constrained clanee&use we want to emphasise the
nature and the role of our constraints, and to avoid confusiibh other kinds of constraints
used in automated reasoning and logic programming.

10 Corresponds to the predicateswer used in our previous examples.



database if for every atomic formufae DB, there is a clausg’ | p’ € DB’ and a
substitutiord, such thap’6 = p. Note thatsemanticallyall clauses inD B’ are tautolo-
gies, becausBem(p(t1,...,tx) | p(t1, ... te)) = D1, tk) VD1, .., tk).
The simplest kind of an abstraction for an RDB is the set oflallises
p(X1,..., Xg) | p(Xy, ..., X)), where allX; are pairwise distinct variables, and each
p corresponds to a table in the RDB (see, e. g., cldlise Fig. 2). Dealing with such
an abstraction can be viewed as reasoning on the schema 81iBe However, in
principle, we can have more specific abstractions. For elgnfipve know that the first
column of our RDB table contains only valuea andb, we may choose to have two
abstraction clauseg(a, Xs, ..., Xx) | p(a, X, ..., X;) and
p(b7 XQ, ce ,Xk) | p(b7 XQ, . ,Xk)ll.
Calculi. In this paper we only deal with calculi that are sound and detevariants
of resolutiord? (see, e. g., [5]). All inference rules in these calculi aréhefform

Cy Cy ... Cy

whereC; and D are ordinary clauses, alr;n)dz 1. Most such rules have a substitution
0 associated with them, which is required to unify some sutesgions inC;, usually
atoms of complementary literals. Rules in the calculi thatf interest to us can be
easily extended to clauses with recording literals as shiowigure 4(a). So, for ex-
ample, the binary resolution rule extended to clauses witbnding literals is shown in
Figure 4(b).

Cilm Colv2 ... Culmm (a) CiVA|m1 CyV—=B|vy
D | 710,720, ..., 7,0 C10V CL0 | v10, v20

wheref = mgu(A, B)

(0)

Fig. 4. Inferences on clauses with recording literals: (a) gerferat, (b) binary resolution

If a calculusR’ is obtained by extending the rules of a calcuRiso clauses with
recording literals, we will simply say tha’ is acalculus with recording literaleand R
is its projection to regular clauses

Apart from nonredundant inferences, resolution calcudidli®! practice usually in-
clude someadmissibleredundant inferences. Implementers have the freedom ef per
forming or not performing such inferences without affegtthe completeness of the
reasoning process. However, for the purposes of this paeconvenient to assume
that calculi being considered only contain nonredundder@mces. This assumption
does not affect generality.

A calculus with recording literals isoundif Sem of the conclusion of every deriva-
tion is logically implied by theSem images of the clauses in the leaves. It is obvious
that a calculus with recording literals is sound if its patien to regular clauses is

1 Moreover, we can have just one abstraction clause, e. g.,
p(X1,..., Xk) | p(X1,...,Xk), X1 € {a,b} with the additionalad hoc constraint
X1 € {a, b}, but this kind of optimisations is outside the scope of tlipgr.

12 paramodulation is also briefly discussed as a future rdsegortunity in Section 8.

10



sound because recording literals are fully inherited. Awglals with recording literals
is refutationally completé its projection to regular clauses is refutationally cdetp,
i.e., an empty clause can be derived from any unsatisfiabte skuses.

In this paper we will mentiofully specified calculio distinguish them from generic
(parameterised) calculi. For example, the ordered binasplution in general is not
fully specified — it is a generic calculymrameterisedby an order on literals. If we fix
this parameter by specifying a concrete order, we obtairlyadpecified calculus. We
view a fully specified calculus as the set of all its elemeniaferences.

We say that a fully specified calculug with recording literals isgeneralisation-
tolerantif every inference inR is generalisation-tolerant. An elementary inference

Cilm Calv2 ... Culm

from the calculus R is generalisationl-%élgrant if for evgmneralisatiorC; | . of a
premiseC; | v;, the calculusk also contains an elementary inference of some general-
isationD’ | ¢’ of D | §, where the premises are a submultiset of

{Cilv, oo, Cica | vier, Cilvi, Cigr | vigts o Cu | )

Unordered binary resolution and hyperresolution provid®ete examples of
generalisation-tolerant calculi. Their ordered versiosing admissible orderings (see,
e. g., [5]) also cause no problems because application cérgbsation to a clause
cannot make a maximal literal nonmaximal, because ofstifestitution propertyof
admissible orderingd; > Lo impliesL10 > Ls6. Adding (negative) literal selection
(see, e. g., [5]) requires some care. In general, if a litsisdlected in a clause, its image,
if it exists, in any generalisation should be selected toghSelection functions are still
possible. For example, we can selalitnegative literals that are maximal w. r. t. some
ordering satisfying the substitution property. In thisesasowever, we can no longer
restrict ourselves to selecting a single literal in a clabseause the ordering can only
be partial.

Note that such calculi are the main working horses in sewdfigient FOL reason-
ers, e. g., Vampire.

Theorem 1 (soundness)Supposer is a sound fully specified calculus with record-
ing literals. Consider a deductive qu&py= (DB, KB, (X1, ..., Xp)(Y1,...,Yy)C).
SupposeD B’ is an abstraction ab B. Suppose we can derive Ra clause] | v from
DB'UKBU{C|—-Q(Xy,...,X;)}. Thend | v is a schematic answer .

This is easy to prove by using the fact that all abstractiansts are semantically
tautologies. Details can be found in [26].

Theorem 2 (completenessBupposer is a refutationally complete and
generalisation-tolerant fully specified calculus witharting literals. Consider a de-
ductive quenyQ = (DB, KB, (X1,..., X )(Y1,...,Y.,)C). SupposeD B’ is an ab-
straction ofD B. Then, for every concrete answ@(ty, . .., t;) to @ one can derive in
RfromDB ' UKBU{C | -Q(Xy,..., X))} aclausé] | v, such thatQ(t,, ..., )
is an instance of the schematic answejr.

Proof. The refutational completeness &f means that we can construct a refuta-
tion A of DB U KB U C[X1/t1,...,X/ts]. The main idea of this proof is that in
a generalisation-tolerant calculus finding an answer toeaygis not much more diffi-
cult than just proving the answer. Technically, we will cenhA into a derivation of a
schematic answer covering the concrete answer, . . ., ).
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Assume thap;, i € [1...p], are all the facts fronD B that contribute taA (as
leaves of the refutation). We can convexinto a derivationd’ of a clause of the form
O p1s---spp, A1, ..., 0 Ay, Wherep,n > 0 and all atomsA; = Q(tq,..., ),
from the clause | p1, ..., pp | pm. C1X1/t1, .., Xi/te] | 2Q(t1,. .., 1)
and some clauses frofd B. To this end, we simply add the recording literals in the
corresponding leaves af\ and propagate them all the way to the root. Obviously,
DBuU{O]| p1,.--,pm,A1,...,mA,} impliesQ(ty, ..., ).

To complete the proof, we will show that’ can be converted into a derivation of a
generalisatiof] |  for the clausél | p1, ..., pm, A1, ..., A, from DB’ U KB U
{C| ~Q(Xy,...,Xk)}. This is a corollary of a more general statement: if we can
derive some claus® from clauses’s, ..., C, in R, andCy, ..., C; are some gener-
alisations of those clauses, then there is a derivation fome ofC], .. ., C(’I in R of
some generalisatioR’ of D. This can be easily proved by induction on the complexity
of the derivation. Indeed, if the derivation contains sonferiences, we apply the in-
ductive hypothesis to the derivations of the premises ofdbeinference (resulting in
D), deriving some generalisations of the premises. The itmlustep simply applies
the generalisation-tolerance & possibly several times, to derive a generalisation of
D from some of the new premises.

Finally, note thatD | v impliesO | p1, ..., pm, A1, ..., A,, and therefor& BU
{O] ~} implies@(¢y, ..., tx).

4 Recording literals as search space pruning constraints.

Let us make an important observati@ame schematic answers to deductive queries
cover no concrete answer¥hese schematic answers are useless and the work spent
on their generation is wasted. We can address this probletryimg to block search
directions that can only lead to such useless schematiceagsw

Suppose we are searching for schematic answers to
(DB,KB,(X1,...,Xk)(Y1,...,Y,)C) by deriving consequences &fB’ U KB U
{C|-Q(X3,...,X)}inan appropriate calculus, whebeB’ is an abstraction ab B.

Database abstraction literals.Suppose we have derived a clause=

D |pl,...,ph —A1, ..., 2 A, wherep > 0,n > 0, all the atomsA; are of the form
Q(ty,...,t;) and all the literalg; are inherited from the recording literals of clauses
from DB'. We can treap, .. ., pj, as follows: if we can somehow establish that the
constraintp}, .. ., pj, has no solutionsv. r. t. DB, we can remove the clauge from
the search space. golutionof p7, ..., pj, w. . t. DB is a substitutiorf, such that all
p;0 € DB.

Such a treatment can be justified with the following argumkeig obvious that if
p1s- - Py, has no solutions w. r. £ B, then any more specific constrapi, . . . , p;,0,
whereo is some substitution, also has no solutions. Since all caegiliterals are fully
inherited in the calculi we are dealing with, any clausedstifrom £ and any other
clauses, will have the same property. Therefore, any sctiemaswer] | v whose
derivation contains the clause, will containyra nonempty subconstraint witho@y,
having no solutions w. r. tD B. Thus,[1 | v cannot cover any concrete answers because
the non@ part of the constraint cannot be satisfied.

12



To summarise, we can discard clauses likavithout sacrificing the completeness
w. I. t. concrete answers. Practically, this can be done byextingp, . . ., o, into an
SQL query (similar to how it is done in Section 5 for schematiswers) and evaluating
the query on the database — empty result set indicates absésclutions w. r. tD B.

Answer literals. Suppose we have derived a schematic answeiD, —A44,...,-A,
where D only contains database abstraction literals or is emp@y,san- 0. For the
schematic answer to have instances, the answer litetdjsmust be simultaneously

unifiable. Indeed, suppose(ty,...,tx) is an instance of the schematic answer. By
Herbrand’s theoren?) B U {-Q(t4, ..., t;)} is inconsistent with a finite set of ground
clauses of the fornld | D9, —~A40,...,—-A,0. We assume that the set is minimal. It

cannot be empty becauSedoes not occur irD B and D B itself is trivially consistent.
Consider any clausel | D8,-A;0,...,-A,0 from the set. All the atomsl,;6 from
this clause are equal @(¢4, . . ., t) because otherwise the set would not be minimal —
any model of the set without this clause could be extendeddkerthis clause true by
making an appropriatd;f true. Thus, all4; are simultaneously unifiable.

The fact proved above can be used to prune the search spaooasfif we
derive an intermediate clause with sofaditerals that are not simultaneously unifiable,
we can discard the clause because any schematic answezdd&owm it will have no
instances. Moreover, we can use the most general unifiér-fderals to strengthen the
test on database abstraction literals by applying the undignem before solving them
on the database.

5 SQL generation.

Suppose that we have found a schematic an§wemy, ..., pp, ~A41,..., A, t0 a
query(DB,KB,(X1,...,Xk){Y1,...,Y,)C). Now our task is to enumerate all in-
stances of the schematic answer by querying the relati@tabdse modeled by the fact
setD B, with an SQL query.

We have four cases to consider. (1pl&= n = 0, then we simply have a refutation
of K B. Formally, this means that any groumt, ..., ;) is a correct answer, but
for practical purposes this is useless. Instead, we shdamlol\s inform the user about
the inconsistency. (2) b = 0 butn # 0, we have to try to unify all the literalgl;.

If 6 = mgu(As,...,A,), then the set of instances of the schematic answer coincides
with the set of ground instances df 0. (3) If p # 0 butn = 0, there is a possibility
that DB U K B is inconsistent. We may want to check this possibility byatteg if

p1,- .., pp has solutions oveb B — if it does, D B is inconsistent withi{ B. The check
itself can be done by converting, . .., p, into an SQL query as in the next case, and
checking if an answer to the SQL query exists. (4) In the résitis section we will be
considering the most interesting case whe# 0 andn # 0.

Using the considerations about answer literals from Seetjave can prove that we
only need to consider the case wher- 1. We can make another simplifying assump-
tion: we only have to deal with schematic answers of the farjD, -Q(X;, ..., Xi),
where X; are pairwise distinct variables, eagh occurs inD, and D contains only
database abstraction literals. Enumeration of instanfb@®re complex answer literals
is reduced to this case.
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Recall that all facts inD B are of the formr;(ai, .. .), where the predicates cor-
respond to tables in a relational database and;ladire constants. Recalling Section 4,
we can assume that literals frobhdo not contain compound terms.

Under these assumptions, it is straightforward to reptetbenschematic answer
with a semantically equivalentlause of the form&, v E. vV Eq4 V D, V A, where
() A = Q(Xy,...,X) and allanswer variablesX; are pairwise distinct; (ii)D,, =
(Y YV Vo (Y, Y ) and all variabled’; are pairwise distinct;
(i) E, consists ofk negative equality literalsy; % X;, i = 1...k, whereq; €
{yi,... ,ka’(p)}; (iv) E. consists of zero or more negative equality literals of thenfo
a # 3, wherea € {Y,... ,Y]j’(p)} andg is a constant; (V4 consists of zero or more

negative equality literals of the form 2 3, wherea, 3 € {Y},. .. ,Y,ﬁp)}.

Finally, we transform the clausg, v E. V E4 V D,V A into an SQL query of the
form SELECT (columns) FROM (tablesy WHERE (join conditions), where
(columns) mapsX; to table columns according t6,, (tables) introduces aliases for
all r; (this is necessary because some;aihay coincide), andjoin conditions) is a
conjunction of joins reflecting the conditions fral) and E;.

For a detailed algorithm for converting schematic answeQL, see [26])

6 A note on indexing Semantic Web documents with data
abstractions.

In the context of Semantic Web (SW), it is important to be dbléendex distributed
semantic data description sets (SW documents, for sinhyglisio that, given a semantic
query modulo some knowledge bases, we can load only the S\Whuats that are
potentially relevant to the query. In this section we brisfgtch a possible scheme for
such indexing that is compatible with our approach to dedecjuerying.

Conventional search engines index regular Web documenigbys appearing in
them. We cannot simply follow this example by indexing SWuloents by the names
of objects, concepts and relations occurring in them. Thisa because retrieval in
general may require reasoning, and thus the relevant dousnmeay use ho common
symbols with the query. For example, a query may request tbdimimals of bright
colours. If some SW document describes, e. g., pink eleghéns relevant, but lex-
ically there is no overlap with the query. Only reasoningeads the relation between
“http://zooontology.org/concept#elephant” and
“http://zooontology.org/concept#animal”’, and between
“http://www.colors.org/concept#pink” and
“http://www.colors.org/concept#brigleolour”.

Note that conceptually there is hardly any difference betwRDBs and, say, OWL
data description sets based on the Web: an RDB camdmeledas a set of ground
atomic logical assertions, and, practically, an SW docurisesuch a set. So, just like
we use abstractions to represent relational data compiactigasoning, we can use
abstractions to represent SW documents. For example, atjzite large SW docu-
ment introducing many pink elephants can be compactly septed by its abstraction
zoo:elephant(X) | zoo:elephant(X),
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colors:hasColour(X,Y) | colors:hasColour(X,Y) and
colors:pink(X) | colors:pink(X).

It seems natural to use such abstraction clauses as indexbke torresponding
SW documents in a semantic search engine. Then, the quesgdng process can be
organised as follows. As in the case of reasoning over RDBati®ns, a reasoner is
used to derive schematic answers to a given query, basetlavagéble abstractions of
indexed SW documents. Each schematic answer to the queepdepn some abstrac-
tion clauses. The documents associated with these clanespstantially relevant to our
query, so we download them, and only them, into our local RB/Burther processing.

Of course, the indexing scheme presented here is just aptuat®ne. The devel-
opers have the flexibility to chose a concrete represemntatfor example, they may just
index by the URIs of concepts and relations, and only créegedrresponding abstrac-
tion clauses when the reasoner is ready to inject them ingliel space. There is also
a possibility of adjusting the degree of generality of adostion clauses by adding some
ad hoc constraints. For example, the first of the abstractimmses from the example
above can be replaced with the more specific
zoo:elephant(X) | zoo:elephant(X), pref(X,” hitp : //www.elephants.com/").
The ad hoc constrainire f (X,” http : //www.elephants.com/") requires the prefix
of the URI X to be "htpp://www.elephants.com/”. The constraint is imgatible with,
e.g.pref(X,” hitp : //www.rhinos.com/"), so if our reasoner derives a clause with
these two constraints, it can safely discard it, thus imjprgpthe precision of indexing.

7 Related work.

We are not aware of any work that uses resolution-basedmigasim a way similar to
the one proposed in this paper, i. e., for incremental quenyiting based on the use
of complete query answering over database abstractiopgeingented with constraints
over the concrete data.

In general, semantic access to relational databases ismeaw &oncept. Some of
the work on this topic is limited to semantic access to, ore®in interpretation of
relational data in terms of Description Logic-based orgas or RDF (see, e. g., [10, 6,
4]), or non-logical semantic schemas (see [28]). Theressalarge number of projects
and publications on the use of RDB for storing and queryimgdaRDF and OWL
datasets: see, e. g., [24,17, 11-13], to mention just a feevfdrmat of the paper does
not allow us to give a comprehensive overview of such workwsowill concentrate
on research that tries to go beyond the expressivity of DL, ahdhe same time, is
applicable to legacy relational databases.

The work presented here was originally inspired by the XSEQiXoject [31]. In
XSTONE, a resolution-based theorem prover (a reimplentientaf Gandalf, which
is, in particular, optimised for taxonomic reasoning) itegrated with an RDBMS by
loading rows from a database as ground facts into the reaandeising them to answer
queries with resolution. The system is highly scalable im&eof expressiveness: it
accepts full FOL with some useful extensions, and also hesepafor RDF, RDFS and
OWL. We believe that our approach has better data scalahititl can cope with very
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large databases which are beyond the reach of XSTONE, ntmstiuse our approach
obtains answers in bulk, and also due to the way we use higiiyrised RDBMS.

Papers [23] and [22] describe, albeit rather superficiallset of tools for mapping
relational databases into OWL and semantic querying of tB8.Rmportantly, the
queries are formulated as SWRL [3] rule bases. Although SWifty allows Horn rules
built with OWL concepts, properties and equality, its exgsieity is already sufficient
for many applications. Given a semantic query in the form 8VERL rule base, the
software generates SQL queries in order to extract someargielata in the form of
OWL assertions and runs a rule engine on this data to genfamateanswers. So the
reasoning is, at least partially, sensitive to the amoumtadé. This gives us hope that
our approach can scale up better because the reasoning therpoocess is completely
independent of the concrete data.

Another project, OntoGrate [14], uses an approach to dedugtiery answering,
which is based on the same ideas as ours: their FOL reasomeEgine [15], can be
used to rewrite original queries formulated in terms of samwlogy, into a finite set
of conjunctive queries in terms of the DB schema, which isittenverted to SQL. For
this task, the reasoner uskeackward chaining with Generalised Modus Pon§2g],
which corresponds to negative hyperresolution on Hornsgaun the more common
terminology. A somewhat ad hoc form of term rewriting [21lised to deal with equal-
ity. Termination is implemented by setting some limits omicing, which allows them
to avoid incremental processing. We hope to go much furthamly, but not only, by
putting our work on a solid theoretical foundation. In pewtar, we are paying atten-
tion to completeness. Since our approach is based on weliest calculi, we hope to
exploit the large amount of previous research on complsteard termination, which
seems very difficult to do with the approach taken by OntoRaghlthough we are
very likely to make various concessions to pragmatics, walgvtike to do this in a
controllable and reproducible manner.

On the more theoretical side, it is necessary to mention tiver@onnections. The
idea of using constraints to represent schematic answéiaiewed from Constraint
Logic Programming [18] and Constrained Resolution [8].cAlthe general idea of us-
ing reasoning for preprocessing expressive queries in@atabdse-related formalism,
was borrowed from [20], where a resolution- and paramodauiatased calculus is used
to translate expressive DL ontologies into Disjunctiveddag. This work also shares
a starting point with ours — the observation that reasoniethods that treat individu-
als/data values separately can not scale up sufficiently.

8 Future work.

Our future work will be mostly concentrated in the followidgections:

Implementation and experiments.A proof-of-concept implementation has been
already created, based on a version of the Vampire provér §2d two experiments
were done — one on a large instance of the LUBM benchmark fiépaother one on
the BioCyc [19] dataset (in OWL). This exploratory work wilé used to guide a more
comprehensive implementation effort, including the innpéatation of a front-end for
all first-order monotonic sublanguages of Derivation Rule]d], an implementation
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of a client-server Java API and tuning the reasoner for thlke ¢d schematic answer
derivation over RDB abstractions.

Equality treatment. If equality is present in our knowledge bases (e. g., in the
form of OWL number restrictions), we can extend the standagpkerposition calculus
to clauses with recording literals as we did with resolutidowever, the completeness
proof does not easily transfer to such use of superposifiberefore, one of our main
priorities now is to look for adjustments of the superpositcalculus that would be
provably complete w. r. t. schematic answers, without be&dognefficient. An obvious
obstacle to generalisation-tolerance is the absence afrgatulations into variables in
the standard paramodulation-based calculi, so, for a starwill try to use the speci-
ficity of reasoning over DB abstractions to eliminate thechfr such inferences in
generalisation-tolerant variants of superposition.

Completeness with redundancy deletionStatic completeness, proven in Sec-
tion 3, is enough to guarantee that we will find all necessasyvars only if our search
procedure generates absolutely all possible derivatiotisd given calculus. In prac-
tice, such approach is almost always inefficient. Typicatyme criteria are applied to
detect redundant clauses and remove them from the cureardecket (see, e. g., [5]).

It seems relatively easy to prove completeness of scheruasizer derivation pro-
cess in presence of the most important redundancy deletdmique: roughly, a clause
subsumed by another clause can be deleted from the cureersectet. The main idea
for such a proof is that if subsumption removes an answevakgsin from the search
space, the search space will still contain a structuraitypser derivation of the same
answer or a more general answer. Note that this is a propeggreralisation-tolerant
calculi. However, if we want to deal with equality efficigntive have to demonstrate
compatibility of our approach with thstandard redundancy criterio(see, e. g., [5,
21)).

Termination. Very often it is desirable that a query answering implemtoneaer-
minates on a given query having exhausted all solutions, fargounting and aggrega-
tion of other kinds. We are interested in identifying congtians of practically relevant
fragments of FOL with reasoning methods and strategies giln@antee termination.
For such fragments, complexity estimations may also beulisef
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