
Efficient Semantic Querying of Relational Databases
with Resolution

Alexandre Riazanov

RuleML

alexandre.riazanov@gmail.com

Abstract. We address the problem of semantic querying of relational databases
(RDB) modulo knowledge bases using very expressive knowledge representation
formalisms, such as full first-order logic or its various fragments. We propose to
use a first-order logic (FOL) reasoner for computingschematic answersto deduc-
tive queries, with thesubsequent instantiationof these schematic answers using
a conventional relational DBMS. In this paper, we outline the main idea of this
technique – usingabstractions of databasesandconstrained clausesfor deriving
schematic answers. The proposed method can be directly usedwith regular RDB,
including legacy databases. Moreover, we propose it as a potential basis for an
efficient Web-scale semantic search technology.

1 Introduction.

1.1 Settings and motivation.

Consider the following scenario. Suppose we have one1 relational database (RDB), one
or more expressive knowledge bases (KB) for domains to whichthe data in the RDB is
related (e. g., rule bases in expressive sublanguages of RuleML [7, 2] and/or ontologies
in OWL). We would like to work witharbitrary (reasonably well designed) RDBs, and,
consequently, the database relations are not assumed to directly correspond to relations
described by the KBs. So, optionally, we may also have some mapping between the
RDB schema and the logical language of the domains, i. e., a logical description of the
relations in the RDB, to link them to the concepts and relations defined by the KBs.
In these settings, we would like to be able to formulate queries logically and answer
them w. r. t. the KBs and the RDB treated virtually as a collection of ground atomic
facts (e. g., by viewing each table row as a separate ground fact). To make this process
efficient, we would like to use the modern RDB technology as much as possible by
delegating as much work as possible to the RDBMS hosting the database.

We propose a method to implement this scenario, based on the use ofresolution for
incremental transformation of semantic queries into sequences of SQL queriesthat can
be directly evaluated on the RDB, and whose results provide answers to the original
queries.

We envisage two main applications for the proposed technology.

1 In principle, our approach can be extended to multiple heterogeneous and distributed
databases, but in this paper we assume, for simplicity, thatwe are dealing with just one DB.

Enhancing the interface to conventional relational databases.Flexible query-
ing of conventional RDBs by non-programmer users is very problematic because real-
life enterprise databases often have complex designs. Writing a correct query requires
good understanding of technical details of the DB schema, such as table and attribute
names, foreign key relationships, nullable fields, etc. So most of RDB querying by non-
programmer users is done with preprogrammed parameterisedqueries, usually repre-
sented as forms of various kinds.

Even when special methodologies are used, like Query-by-Example (see, e. g. [25]),
that allow to hide some of the complexities of SQL and database designs from the
end users, one important inherent limitation remains in force. Whereas mapping some
domain concepts to the RDB schema elements may be easy, many other concepts may
be much more difficult to map. For example, it is easy to selectinstances of the concept
“student” if there is a table explicitly storing all students, but if the user wants to extract
a list of all members of a department in a university, he may have toseparatelyquery
different tables storing information about students, faculty and support staff (assuming
that there is no table specifically storing members of all these kinds), and then create a
union of the results.

This example exposes well the root of the problem: mapping some domain concepts
to the data is difficult because it requiresapplication of the domain knowledge. In the
example, the involved piece of domain knowledge is the fact that students, faculty and
support staff are all department members, and the user has toapply it manually to obtain
the required results.

Semantic queryingis based on automatic application of domain knowledge for-
malised in the form of, e. g., rules and ontological axioms. In this approach, DB pro-
grammers “semantically document” their DB designs by providing an explicit mapping
between the RDB schemas and domain terminologies, e. g., in the form of logical ax-
ioms. This alone allows an end user to formulate queries directly in the terminology
of the domain, without even a slightest idea about how the underlying RDBs are struc-
tured2. However, the biggest advantage comes from the fact that reasoning w. r. t. addi-
tional, completely external KBs can be employed to generateand justify some answers,
which makes querying not justsemantic, as in [28], but alsodeductive. In our current
example, the user can provide, as a part of the query, some KB that links the relations
of being a department member, being a student in the department, etc. In some applica-
tion contexts, it is important to be able to use rather expressive KBs for such purposes.
Rule-based KBs and expressive DL ontologies are of a specialinterest, especially in
combination.

Web-scale semantic search.The Semantic Web is accumulating a lot of data in
the form of RDF and OWL assertions referring to various formalised vocabularies –
ontologies. In some cases the expressivity of RDF(S) and OWLmay not be enough3

2 This does not alleviate the need for convenient query interfaces, but they are outside the scope
of this paper.

3 For example, OWL cannot express the following simple rule
hasUncle(X, Y) : − hasParent(X,Z), hasBrother(Z, Y) [3]. OWL also restricts the
arity of predicates to2 and does not directly support functions, thus limiting knowledge engi-
neering possibilities. More detailed discussion of this issue is outside the scope of this paper.

2

and knowledge bases in other formalisms, e. g., RuleML [7, 2], RIF [1] or SWRL [3],
have to be used to capture more complex dependencies betweendomain concepts and
relations, thus making the data descriptions sufficiently semantically rich.

The utility of the Semantic Web data will strongly depend on how easily and how
efficiently users and agents can query it. Roughly speaking,we need toquery extremely
large volumes of highly distributed data modulo expressiveknowledge bases, so that
not only direct answers based on the stored data are returned, but also implied answers
that can only be obtained by reasoning.

The approach proposed here may be a part of a solution to this problem: large sets of
RDF triples and OWL data descriptions (coming from SemanticWeb documents) can
be loaded into a relational database and then queried deductively modulo the relevant
knowledge bases. Different DB layouts can be used, depending on the nature of the
data being loaded. For example, if we load an OWL ABox, we can have a separate one-
column table for keeping instances of each class and, similarly, a separate two-column
table for keeping assertions of each property4. Loading data descriptions into an RDB is
a linear operation, so it is unlikely to become a real performance bottleneck. Moreover,
we can start producing answers even before the data is fully loaded. So the efficiency of
such a scheme depends mostly on how efficiently the deductivequerying on the RDB
can be done.

Just like text-based Web search engines do not indiscriminately scan all the acces-
sible documents each time a new query is processed, semanticsearch systems cannot
examine all accessible data descriptions in every retrieval attempt. Instead, some form
of indexing is necessary that would allow to avoid downloading data that is irrelevant
to a specific query, and would focus the processing on the setsof assertions that are
likely to contribute to some answers to the query. We will show that the core feature of
our approach to deductive querying of RDB – incremental query rewriting – suggests a
natural way of semantically indexing distributed data sources.

1.2 Outline of the proposed method.

To implement the target scenario, we propose to use a first-order logic reasoner in com-
bination with a conventional RDBMS, so that the reasoner does the “smart” part of the
job, and the RDBMS is used for what it is best at – relatively simple processing of large
volumes of relational data by computing table joins. Roughly, the reasoner works as
a query preprocessor. It accepts a semantic query, the relevant knowledge bases and a
semantic mapping for a DB as its input, and generates a (possibly infinite) number of
expressions which we callschematic answers5, that can be easily converted into SQL
queries. These SQL queries are then evaluated on the DB with the help of the RDBMS.
The union of the results for these SQL queries contains all answers to the original de-
ductive query.

This idea can be implemented with a relatively simple architecture as shown in Fig-
ure 1. The architecture introduces two main modules – a reasoner for finding schematic

4 These is the scheme used in all examples throughout the paper.
5 In earlier versions of this paper we used the termgeneric answers, which clashes with the

classification proposed in [9].

3

solutions and an SQL generator to turn these solutions into SQL queries. We also as-
sume that some off-the-shelf RDBMS is used to answer the SQL queries. All three com-
ponents (can) work in parallel: while the reasoner searchesfor another schematic an-
swer, the SQL generator can process some previous general solutions and the RDBMS
can generate instances for some earlier general solutions and communicate them to the
user.

Optionally, the reasoner may try to prune the search space bychecking certain con-
straints over the RDB (details will be provided in Section 4). These constraints are also
converted into SQL queries and sent to the RDBMS for evaluation. The results of the
evaluation (′satisfiable′ or ′unsatisfiable′) are sent back to the reasoner which can
use the absence of solutions for a constraint as a justification for suppressing certain
inferences.

User/client
code

Reasoner

general
solutionsQuery

KBs

RDB
abstraction

SQL
generator

constraints

SQL queries

SQL queries
for constraints

feedback on constraint satisfiability

RDBMS

Query answers

RDB

Fig. 1. Architecture for deductive query answering

The rest of this paper is structured as follows. In Section 2 we introduce the method
intuitively. In Section 3 we provide a minimal mathematicaljustification of usabil-
ity of our approach by demonstrating soundness and completeness of some standard
resolution-based calculi for rewriting semantic queries into sequences of schematic an-
swers. In Section 4 we describe one optimisation specific to schematic answer search.
In Section 6 we briefly discuss how semantic indexing can be done using data abstrac-
tions, in the context of Web-scale retrieval. In Section 5 weprovide an algorithm for
converting the logical representation of schematic answers into SQL. Finally, Sections 7
and 8 briefly describe some related and future work.

2 Informal method description.

We modelan RDB as a finite set of ground atomic formulas, so that RDB table names
provide the predicates, and rows are conceptually treated as applications of the predi-
cates to the row elements. In the example below, we have a table takesCourse from
a University DB, keeping information about which student takes which course, whose
rows are mapped to a set of facts.

4

takesCourse student course
s1 c1 −→ takesCourse(s1,c1)
s2 c2 −→ takesCourse(s2,c2)
s3 c3 −→ takesCourse(s3,c3)
.

Before we proceed with more important things, note that in all our examples in
this paper, the data is assumed to be a relational representation of some DL ABoxes.
This is done not to clutter the presentation of the main ideaswith RDB schema-related
details. In particular, there is no need for a special RDB-to-KB mapping because the
RDB tables directly correspond to concepts and properties.It bears repeating that this
assumption is madeonly to simplify the presentation– our approach is applicable to
any RDBs, including legacy ones, as long as their design allows reasonable semantic
mapping.

Now, suppose we are trying to answer a query over our RDB deductively, e. g.,
modulo some KB.

Naive approach as a starting point.Hypothetically, we can explicitlyrepresent the
DB as a collection of ground atomic factsand use some resolution-based FOL reasoner
supporting query answering, e.g., Vampire [27] or Gandalf [30].

Even if we have enough memory to load the facts, this approachis likely to be very
inefficient for the following reason. If the RDB is large and the selectivity of the query
is not very high, we can expect thatmany answers will be obtained with structurally
identical proofs. For example, if our DB contains factsgraduateStudent(s1), . . . ,
graduateStudent(s100) (representing some tablegraduateStudent which simply
keeps a list of all graduate students), the facts will give rise to 100 answers to the query
student(X)6, each having a refutational proof of the form shown in Figure2 (where
grStud, takesC, pers andstud abbreviategraduateStudent, takesCourse, person
andstudent, andsk0 is a Skolem function).

This example is intended to demonstrate howwasteful reasoning on the per-answer
basis is. Roughly speaking, the required amount of reasoning is multiplied with the
number of answers. Even if the selectivity of the query is very high, the reasoner is still
likely to waste a lot of work in unsuccessful attempts represented by derivations not
leading to any answers.

Note that these observations are not too specific to the choice of the reasoning
method. For example, if we used Prolog or a tableaux-based DLreasoner, we would
have a similar picture: the same rule applications would be performed for each answer
si.

Main idea. The main idea of our proposal is thatanswers with similar proofs should
be obtained in bulk. More specifically, we propose touse reasoning to find schematic
answersto queries, which can be later very efficientlyinstantiated by querying the
RDB via the standard highly optimised RDBMS mechanisms. Technically, we propose
to search for the schematic answers byreasoning on an abstraction of the RDB in
some resolution- and paramodulation-based calculus(see [5, 21]). The abstraction and

6 Query 6 from LUBM [16].

5

[0] ¬grCourse(X) ∨ course(X) ; input,grCourse ⊑ course

[1] grStud(si) ; input, DB row
[2] ¬grStud(X) ∨ grCourse(sk0(X)) ; input, fromgrStud ⊑ ∃takesC.grCourse

[3] grCourse(sk0(si)) ; from [1] and [2]
[4] course(sk0(si)) ; from [0] and [3]
[5] ¬grStud(X) ∨ takesC(X,sk0(X)) ; input, fromgrStud ⊑ ∃takesC.grCourse

[6] takesC(si, sk0(si)) ; from [1] and [5]
[7] ¬takesC(X, Y) ∨ ¬course(Y) ∨ ; input, fromstud ≡ pers ⊓ ∃takesC.course

¬pers(X) ∨ stud(X)
[8] ¬course(sk0(si)) ∨ ¬pers(si) ∨ stud(si) ; from [6] and [7]
[9] ¬pers(si) ∨ stud(si) ; from [4] and [8]
[10] ¬grStud(X) ∨ pers(X) ; input,grStud ⊑ pers

[11] pers(si) ; from [1] and [10]
[12] stud(si) ; from [9] and [11]
[13] ¬stud(X) ∨ answer(X) ; input, queryfind X.stud(X)
[14] answer(si) ; from [12] and [13]

Fig. 2. Resoluton derivation of the answerX := si for the querystud(X).

the reasoning on the abstraction should be organised in sucha way that the obtained
schematic answers can be turned intoregular RDBMS queries(e.g., SQL queries).

Constrained clauses and table abstractions.To illustrate our main idea, we apply
it to the current example. The clausegrStud(X) | grStud(X) is theabstractionof the
relevant part of the RDB, i.e., it represents (generalises)all the factsgrStud(s1), . . . ,
grStud(s100). This is a very important feature of our approach, so we emphasise that a
potentially very large set of facts is compactly represented with just one clause. The part
before “|” is the ordinary logical content of the clause. What comes after “|” is a special
constraint. These constraints will beinherited in all inference rules,instantiatedwith
the corresponding unifiers andcombinedwhen they come from different premises, just
like, e. g., ordering or unifiability constraints in paramodulation-based theorem proving
[21]. Although our constraints can be used as regular constraints – that is to identify
redundant inferences by checking the satisfiability of the associated constraints w.r.t.
the RDB (see Section 4) –their main purpose is to record which RDB fact abstractions
contribute to a schematic answer and what conditions on the variables of the abstrac-
tions have to be checked when the schematic answer is instantiated, so that the obtained
concrete answers are sound.

A derivation of a schematic answer for the querystudent(X), covering all the
concrete solutionsX := s1, . . . , X := s100, is shown in Figure 3. Note that the last
inference simply merges three identical atomic constraints. Also note that we write the
answer literals on the constraint sides of the clauses, because they are not intended for
resolution.

SQL generation.Semantically the derived schematic answer� | ¬answer(X),
grStud(X) means that if some valuex is in the tablegraduateStudent, thenx is a
legitimate concrete answer to the query. So, assuming thatid is the (only) attribute in
the RDB table representing the instances ofgraduateStudent, the derived schematic

6

[0] ¬grCourse(X) ∨ course(X) ; input, KB
[1] grStud(X) | grStud(X) ; DB table abstraction
[2] ¬grStud(X) ∨ grCourse(sk0(X)) ; input, KB
[3] grCourse(sk0(X)) | grStud(X) ; from [1] and [2]
[4] course(sk0(X)) | grStud(X) ; from [0] and [3]
[5] ¬grStud(X) ∨ takesC(X,sk0(X)) ; input, KB
[6] takesC(X,sk0(X)) | grStud(X) ; from [1] and [5]
[7] ¬takesC(X, Y) ∨ ¬course(Y) ∨ ¬pers(X) ∨ stud(X) ; input, KB
[8] ¬course(sk0(X)) ∨ ¬pers(X) ∨ stud(X) | grStud(X) ; from [6] and [7]
[9] ¬pers(X) ∨ stud(X) | grStud(X), grStud(X) ; from [4] and [8]
[10] ¬grStud(X) ∨ pers(X) ; input, KB
[11] pers(X) | grStud(X) ; from [1] and [10]
[12] stud(X) | grStud(X), grStud(X), grStud(X) ; from [9] and [11]
[13] ¬stud(X) | ¬answer(X) ; query
[14] � | ¬answer(X), grStud(X), grStud(X), grStud(X) ; from [12] and [13]
[15] � | ¬answer(X), grStud(X) ; from [14]

Fig. 3. Resolution derivation of some schematic answer forstud(X).

answer� | ¬answer(X), grStud(X) can be turned into the following simple SQL
query: SELECTid AS X

FROM graduateStudent
Evaluating this query over the RDB will return all the answersX := s1, . . . , X := s100.

Resolution reasoning on a DB abstraction may give rise tomore than one schematic
answer. For example,� | ¬answer(X), grStud(X) does not necessarily cover all pos-
sible solutions of the initial query – it only enumerates graduate students. If our KB also
postulates that any person taking a course is a student, we want to select all such people
as well. So, suppose that our DB also contains the factsperson(P1), . . . , person(P100),
takesCourse(P1, C1), . . . , takesCourse(P100, C100) andcourse(C1), . . . ,
course(C100) in the corresponding tablesperson, takesCourse andcourse. These
relations can be represented with the abstraction clausesperson(X) | person(X),
takesCourse(X, Y) | takesCourse(X, Y) andcourse(X) | course(X). Simple rea-
soning with these clauses modulo, say, a KB containing the rule
student(P) : − person(P), takesCourse(P, C), course(C) or the DL axiom
person ⊓ ∃takesC.course ⊑ student, produces the schematic answer
� | ¬answer(X), person(X), takesCourse(X, Y), course(Y). Semantically it
means that if tabletakesCourse contains a record{student = s, course = c}, and
tablesperson andcourse contains andc correspondingly, thenX := s is a legitimate
concrete answer. Thus, the schematic answer can be turned into the following SQL
query:

SELECT person.id AS X
FROM person, takesCourse, course
WHERE person.id = takesCourse.student

AND course.id = takesCourse.course

The join conditionsperson.id = takesCourse.student andcourse.id =
takesCourse.course reflect the fact that the corresponding arguments of the predi-

7

cates in the constraint attached to the schematic answer areequal: e.g., the only argu-
ment ofperson, corresponding toperson.id, and the first argument oftakesCourse,
corresponding totakesCourse.student, are both the same variableX .

Incremental query rewriting. In general, resolution over DB abstractions in the
form of constrained clauses may produce many, even infinitely many, schematic an-
swers and, consequently, SQL queries. They are produced oneby one, and the union of
their answers covers the whole set of concrete answers to thequery. If there is only a
finite number of concrete answers, e. g., if the query allows concrete answers to con-
tain only plain data items from the database, then all concrete answers are covered after
some finite number of steps. In a sense, the original semanticquery is rewritten as a
sequence of SQL queries, so we call our techniqueincremental query rewriting.

Benefits.The main advantage of the proposed scheme is theexpressivity scalability.
For example, in applications not requiring termination, the expressivity of the knowl-
edge representation formalisms is only limited by the expressivity of the full FOL7,
although specialised treatment of various FOL fragments islikely to be essential for
good performance. The use of such a powerful logic as FOL as the common platform
also allows easy practical simultaneous use of heterogeneous knowledge bases, at least
for some data retrieval tasks. In particular, it means that users can freely mix all kinds
of OWL and RDFS ontologies with all kinds of (first-order, monotonic) declarative rule
sets, e. g., in RuleML or SWRL.

It is important that we don’t pay too high a price in terms of performance, for the
extra expressivity. The method has good data scalability: roughly,the cost of reasoning
is not multiplied by the volume of data. Note also that we don’t have to do any static
conversion of the data into a different data model, e. g., RDFtriples or OWL ABox –
querying can be done on live databases via the hosting RDBMSs. All this makes our
method potentially usable with very large databases in real-life settings.

An additional advantage of our approach is that answers to semantic queries can be
relatively easily given rigorous explanations. Roughly speaking, if we need to explain
a concrete answer, we simply instantiate the derivation of the corresponding schematic
answer by replacing DB table abstractions with concrete DB rows, and propagating this
data through the derivation. Thus, we obtain a resolution proof of the answer, which can
be relatively easily analysed or transformed into a more intuitive representation.

3 Soundness and completeness of schematic answer computation.

So far we have only speculated that schematic answer search can be implemented based
on resolution. In this section we are going to put it on a formal basis. We will show that
in the context of FOL without equality some popular resolution-based methods can de-
liver the desired results. In particular, we will characterise a class of resolution-based
calculi that are both sound and complete for query answeringover database abstrac-
tions.

We assume familiarity of the reader with the standard notions of first-order logic,
such as terms, formulas, literals and clauses, substitutions, etc., and some key results,

7 Complete methods for efficient schematic answer finding in FOL with equalityare yet to be
formulated and proved formally (see the brief discussion inSection 8).

8

such as the Herbrand’s theorem. Bibliographic references are provided for more spe-
cialised concepts and facts.

Deductive queries.In our settings, adeductive queryis a triple 〈DB, KB, ϕ〉,
where (i) the logical representationDB of some relational database is a set of ground
atomic non-equality formulas, each representing a row in a table in the database, (ii)
theknowledge baseKB is a finite set of FOL axioms, corresponding to both the do-
main ontologies and semantic RDB schema mappings in our scenario, and (iii) thegoal
ϕ of the query is a construct of the form〈X1, . . . , Xk〉〈Y1, . . . , Ym〉C, whereC is a
nonempty clause,k, m ≥ 0, {X1, . . . , Xk, Y1, . . . , Ym} = vars(C), all Xi andYi are
pairwise distinct. We callXi distinguished variables, andYj undistinguished variables
of the query. Intuitively, the deductive query represents arequest to find allXi, such
that there exist someYj , such thatϕ(X, Y) is inconsistentwith DB ∪ KB. In other
words, answers to the query refuteϕ rather than prove it8. This convention is made for
technical convenience. Users of our technology can work in terms of positive queries.

Recording literals. In our settings, a clause withrecording literals9 is a construct
of the following form:C | γ, whereC is a regular first-order clause, possibly empty,
andγ is a finite multiset of literals, possibly empty. We will say that the literals ofγ are
recording literals.

Semantically, C | λ1, . . . , λn is the same as the regular clauseC ∨ λ1 ∨ . . . ∨
λn, which will be denoted asSem(C | λ1, . . . , λn). All semantic relations between
Sem(C | γ) and other formulas are transferred toC | γ. For example, when we say that
C | γ is implied by something, it means thatSem(C | γ) is implied, and vice versa.

Regular clauses will be often identified with clauses with empty recording parts,
i.e., we will not distinguishC from C | ∅.

We say that a clauseC′ | γ′ subsumes the clauseC | γ iff there is a substitutionθ
that makesC′θ a submultiset ofC, andγ′θ a submultiset ofγ′. In this case we will also
say thatC′ | γ′ is ageneralisationof C | γ.

Concrete and schematic answers.We distinguish a special predicate symbol@10.
A ground atomic formula@(t1, . . . , tk) is a concreteanswer to the deductive query
〈DB, KB, 〈X1, . . . , Xk〉〈Y1, . . . , Ym〉C〉, if the clauseC[X1/t1, . . . , Xk/tk] is incon-
sistentwith DB∪KB or, equivalently, the formula∃Y1 . . . Ym¬C[X1/t1, . . . , Xk/tk]
is implied byDB ∪ KB.

We say that a clause� | γ is aschematic answerto a deductive query
〈DB, KB, 〈X1, . . . , Xk〉〈Y1, . . . , Ym〉C〉, if every atomic ground formula of the form
@(t1, . . . , tk) implied by DB ∪ {� | γ}, is a concrete answer to the query. Every
such concrete answer will be called aninstanceof the schematic answer. For example,
@(s1), . . . , @(s100) are instances of the schematic answer� | ¬@(X), grStud(X) in
the main example in Section 2.

Database abstractions.In our settings, a finite setDB′ of clauses of the form
p(t1, . . . , tk) | p(t1, . . . , tk) is an abstractionof the logical representationDB of a

8 Recall the part¬stud(X) of clause[13] from Fig. 2.
9 We prefer this to the more general term “constrained clause”because we want to emphasise the

nature and the role of our constraints, and to avoid confusion with other kinds of constraints
used in automated reasoning and logic programming.

10 Corresponds to the predicateanswer used in our previous examples.

9

database if for every atomic formulaρ ∈ DB, there is a clauseρ′ | ρ′ ∈ DB′ and a
substitutionθ, such thatρ′θ = ρ. Note thatsemanticallyall clauses inDB′ are tautolo-
gies, becauseSem(p(t1, . . . , tk) | p(t1, . . . , tk)) = p(t1, . . . , tk) ∨ ¬p(t1, . . . , tk).

The simplest kind of an abstraction for an RDB is the set of allclauses
p(X1, . . . , Xk) | p(X1, . . . , Xk), where allXi are pairwise distinct variables, and each
p corresponds to a table in the RDB (see, e. g., clause[1] in Fig. 2). Dealing with such
an abstraction can be viewed as reasoning on the schema of theRDB. However, in
principle, we can have more specific abstractions. For example, if we know that the first
column of our RDB tablep contains only valuesa andb, we may choose to have two
abstraction clauses:p(a, X2, . . . , Xk) | p(a, X2, . . . , Xk) and
p(b, X2, . . . , Xk) | p(b, X2, . . . , Xk)11.

Calculi. In this paper we only deal with calculi that are sound and complete variants
of resolution12 (see, e. g., [5]). All inference rules in these calculi are ofthe form

C1 C2 . . . Cn

D
whereCi andD are ordinary clauses, andn ≥ 1. Most such rules have a substitution
θ associated with them, which is required to unify some subexpressions inCi, usually
atoms of complementary literals. Rules in the calculi that are of interest to us can be
easily extended to clauses with recording literals as shownin Figure 4(a). So, for ex-
ample, the binary resolution rule extended to clauses with recording literals is shown in
Figure 4(b).

C1 | γ1 C2 | γ2 . . . Cn | γn

D | γ1θ, γ2θ, . . . , γnθ
(a)

C′

1 ∨ A | γ1 C′

2 ∨ ¬B | γ2

C′

1θ ∨ C′

2θ | γ1θ, γ2θ
(b)

whereθ = mgu(A,B)

Fig. 4. Inferences on clauses with recording literals: (a) generalform, (b) binary resolution

If a calculusR′ is obtained by extending the rules of a calculusR to clauses with
recording literals, we will simply say thatR′ is acalculus with recording literalsandR
is its projection to regular clauses.

Apart from nonredundant inferences, resolution calculi used in practice usually in-
clude someadmissibleredundant inferences. Implementers have the freedom of per-
forming or not performing such inferences without affecting the completeness of the
reasoning process. However, for the purposes of this paper it is convenient to assume
that calculi being considered only contain nonredundant inferences. This assumption
does not affect generality.

A calculus with recording literals issoundif Sem of the conclusion of every deriva-
tion is logically implied by theSem images of the clauses in the leaves. It is obvious
that a calculus with recording literals is sound if its projection to regular clauses is

11 Moreover, we can have just one abstraction clause, e. g.,
p(X1, . . . , Xk) | p(X1, . . . , Xk), X1 ∈ {a, b} with the additionalad hoc constraint
X1 ∈ {a, b}, but this kind of optimisations is outside the scope of this paper.

12 Paramodulation is also briefly discussed as a future research opportunity in Section 8.

10

sound because recording literals are fully inherited. A calculus with recording literals
is refutationally completeif its projection to regular clauses is refutationally complete,
i.e., an empty clause can be derived from any unsatisfiable set of clauses.

In this paper we will mentionfully specified calculito distinguish them from generic
(parameterised) calculi. For example, the ordered binary resolution in general is not
fully specified – it is a generic calculusparameterisedby an order on literals. If we fix
this parameter by specifying a concrete order, we obtain a fully specified calculus. We
view a fully specified calculus as the set of all its elementary inferences.

We say that a fully specified calculusR with recording literals isgeneralisation-
tolerant if every inference inR is generalisation-tolerant. An elementary inference

C1 | γ1 C2 | γ2 . . . Cn | γn

D | δ
from the calculus R is generalisation-tolerant if for everygeneralisationC′

i | γ′

i of a
premiseCi | γi, the calculusR also contains an elementary inference of some general-
isationD′ | δ′ of D | δ, where the premises are a submultiset of
{C1 | γ1, . . . , Ci−1 | γi−1, C′

i | γ
′

i, Ci+1 | γi+1, . . . , Cn | γn}.
Unordered binary resolution and hyperresolution provide simple examples of

generalisation-tolerant calculi. Their ordered versionsusing admissible orderings (see,
e. g., [5]) also cause no problems because application of generalisation to a clause
cannot make a maximal literal nonmaximal, because of thesubstitution propertyof
admissible orderings:L1 > L2 impliesL1θ > L2θ. Adding (negative) literal selection
(see, e. g., [5]) requires some care. In general, if a literalis selected in a clause, its image,
if it exists, in any generalisation should be selected too. Such selection functions are still
possible. For example, we can selectall negative literals that are maximal w. r. t. some
ordering satisfying the substitution property. In this case, however, we can no longer
restrict ourselves to selecting a single literal in a clause, because the ordering can only
be partial.

Note that such calculi are the main working horses in severalefficient FOL reason-
ers, e. g., Vampire.

Theorem 1 (soundness).SupposeR is a sound fully specified calculus with record-
ing literals. Consider a deductive queryQ = 〈DB, KB, 〈X1, . . . , Xk〉〈Y1, . . . , Ym〉C〉.
SupposeDB′ is an abstraction ofDB. Suppose we can derive inR a clause� | γ from
DB′ ∪ KB ∪ {C | ¬@(X1, . . . , Xk)}. Then� | γ is a schematic answer toQ.

This is easy to prove by using the fact that all abstraction clauses are semantically
tautologies. Details can be found in [26].

Theorem 2 (completeness).SupposeR is a refutationally complete and
generalisation-tolerant fully specified calculus with recording literals. Consider a de-
ductive queryQ = 〈DB, KB, 〈X1, . . . , Xk〉〈Y1, . . . , Ym〉C〉. SupposeDB′ is an ab-
straction ofDB. Then, for every concrete answer@(t1, . . . , tk) to Q one can derive in
R from DB′ ∪ KB ∪ {C | ¬@(X1, . . . , Xk)} a clause� | γ, such that@(t1, . . . , tk)
is an instance of the schematic answer� | γ.

Proof. The refutational completeness ofR means that we can construct a refuta-
tion ∆ of DB ∪ KB ∪ C[X1/t1, . . . , Xk/tk]. The main idea of this proof is that in
a generalisation-tolerant calculus finding an answer to a query is not much more diffi-
cult than just proving the answer. Technically, we will convert∆ into a derivation of a
schematic answer covering the concrete answer@(t1, . . . , tk).

11

Assume thatρi, i ∈ [1 . . . p], are all the facts fromDB that contribute to∆ (as
leaves of the refutation). We can convert∆ into a derivation∆′ of a clause of the form
� | ρ1, . . . , ρp,¬A1, . . . ,¬An, wherep, n ≥ 0 and all atomsAi = @(t1, . . . , tk),
from the clausesρ1 | ρ1, . . . , ρp | ρm, C[X1/t1, . . . , Xk/tk] | ¬@(t1, . . . , tk)
and some clauses fromKB. To this end, we simply add the recording literals in the
corresponding leaves of∆ and propagate them all the way to the root. Obviously,
DB ∪ {� | ρ1, . . . , ρm,¬A1, . . . ,¬An} implies@(t1, . . . , tk).

To complete the proof, we will show that∆′ can be converted into a derivation of a
generalisation� | γ for the clause� | ρ1, . . . , ρm,¬A1, . . . ,¬An from DB′ ∪ KB ∪
{C | ¬@(X1, . . . , Xk)}. This is a corollary of a more general statement: if we can
derive some clauseD from clausesC1, . . . , Cq in R, andC′

1, . . . , C
′

q are some gener-
alisations of those clauses, then there is a derivation fromsome ofC′

1, . . . , C
′

q in R of
some generalisationD′ of D. This can be easily proved by induction on the complexity
of the derivation. Indeed, if the derivation contains some inferences, we apply the in-
ductive hypothesis to the derivations of the premises of thelast inference (resulting in
D), deriving some generalisations of the premises. The induction step simply applies
the generalisation-tolerance ofR, possibly several times, to derive a generalisation of
D from some of the new premises.

Finally, note that� | γ implies� | ρ1, . . . , ρm,¬A1, . . . ,¬An, and thereforeDB∪
{� | γ} implies@(t1, . . . , tk).

4 Recording literals as search space pruning constraints.

Let us make an important observation:some schematic answers to deductive queries
cover no concrete answers. These schematic answers are useless and the work spent
on their generation is wasted. We can address this problem bytrying to block search
directions that can only lead to such useless schematic answers.

Suppose we are searching for schematic answers to
〈DB, KB, 〈X1, . . . , Xk〉〈Y1, . . . , Ym〉C〉 by deriving consequences ofDB′ ∪ KB ∪
{C | ¬@(X1, . . . , Xk)} in an appropriate calculus, whereDB′ is an abstraction ofDB.

Database abstraction literals.Suppose we have derived a clauseE =
D | ρ′1, . . . , ρ

′

p,¬A1, . . . ,¬An wherep > 0, n ≥ 0, all the atomsAi are of the form
@(ti1, . . . , t

i
k) and all the literalsρ′j are inherited from the recording literals of clauses

from DB′. We can treatρ′1, . . . , ρ
′

p as follows: if we can somehow establish that the
constraintρ′1, . . . , ρ

′

p has no solutionsw. r. t. DB, we can remove the clauseE from
the search space. Asolutionof ρ′1, . . . , ρ

′

p w. r. t. DB is a substitutionθ, such that all
ρ′iθ ∈ DB.

Such a treatment can be justified with the following argument. It is obvious that if
ρ′1, . . . , ρ

′

p has no solutions w. r. t.DB, then any more specific constraintρ′1σ, . . . , ρ′pσ,
whereσ is some substitution, also has no solutions. Since all recording literals are fully
inherited in the calculi we are dealing with, any clause derived fromE and any other
clauses, will have the same property. Therefore, any schematic answer� | γ whose
derivation contains the clause, will contain inγ a nonempty subconstraint without@,
having no solutions w. r. t.DB. Thus,� | γ cannot cover any concrete answers because
the non-@ part of the constraintγ cannot be satisfied.

12

To summarise, we can discard clauses likeE without sacrificing the completeness
w. r. t. concrete answers. Practically, this can be done by convertingρ′1, . . . , ρ

′

p into an
SQL query (similar to how it is done in Section 5 for schematicanswers) and evaluating
the query on the database – empty result set indicates absence of solutions w. r. t.DB.

Answer literals. Suppose we have derived a schematic answer� | D,¬A1, . . . ,¬An

whereD only contains database abstraction literals or is empty, and n > 0. For the
schematic answer to have instances, the answer literals¬Ai must be simultaneously
unifiable. Indeed, suppose@(t1, . . . , tk) is an instance of the schematic answer. By
Herbrand’s theorem,DB ∪ {¬@(t1, . . . , tk)} is inconsistent with a finite set of ground
clauses of the form� | Dθ,¬A1θ, . . . ,¬Anθ. We assume that the set is minimal. It
cannot be empty because@ does not occur inDB andDB itself is trivially consistent.
Consider any clause� | Dθ,¬A1θ, . . . ,¬Anθ from the set. All the atomsAiθ from
this clause are equal to@(t1, . . . , tk) because otherwise the set would not be minimal –
any model of the set without this clause could be extended to make this clause true by
making an appropriateAiθ true. Thus, allAi are simultaneously unifiable.

The fact proved above can be used to prune the search space as follows: if we
derive an intermediate clause with some@-literals that are not simultaneously unifiable,
we can discard the clause because any schematic answer derived from it will have no
instances. Moreover, we can use the most general unifier for@-literals to strengthen the
test on database abstraction literals by applying the unifier to them before solving them
on the database.

5 SQL generation.

Suppose that we have found a schematic answer� | ρ1, . . . , ρp,¬A1, . . . ,¬An to a
query〈DB, KB, 〈X1, . . . , Xk〉〈Y1, . . . , Ym〉C〉. Now our task is to enumerate all in-
stances of the schematic answer by querying the relational database modeled by the fact
setDB, with an SQL query.

We have four cases to consider. (1) Ifp = n = 0, then we simply have a refutation
of KB. Formally, this means that any ground@(t1, . . . , tk) is a correct answer, but
for practical purposes this is useless. Instead, we should simply inform the user about
the inconsistency. (2) Ifp = 0 but n 6= 0, we have to try to unify all the literalsAi.
If θ = mgu(A1, . . . , An), then the set of instances of the schematic answer coincides
with the set of ground instances ofA1θ. (3) If p 6= 0 but n = 0, there is a possibility
thatDB ∪ KB is inconsistent. We may want to check this possibility by checking if
ρ1, . . . , ρp has solutions overDB – if it does,DB is inconsistent withKB. The check
itself can be done by convertingρ1, . . . , ρp into an SQL query as in the next case, and
checking if an answer to the SQL query exists. (4) In the rest of this section we will be
considering the most interesting case whenp 6= 0 andn 6= 0.

Using the considerations about answer literals from Section 4, we can prove that we
only need to consider the case whenn = 1. We can make another simplifying assump-
tion: we only have to deal with schematic answers of the form� | D,¬@(X1, . . . , Xk),
whereXi are pairwise distinct variables, eachXi occurs inD, andD contains only
database abstraction literals. Enumeration of instances of more complex answer literals
is reduced to this case.

13

Recall that all facts inDB are of the formri(a
i
1, . . .), where the predicatesri cor-

respond to tables in a relational database and allai
j are constants. Recalling Section 4,

we can assume that literals fromD do not contain compound terms.
Under these assumptions, it is straightforward to represent the schematic answer

with a semantically equivalentclause of the formEa ∨ Ec ∨ Ed ∨ Dx ∨ A, where
(i) A = @(X1, . . . , Xk) and allanswer variablesXi are pairwise distinct; (ii)Dx =
¬r1(Y

1
1 , . . . , Y 1

k(1))∨. . .∨¬rp(Y p
1 , . . . , Y p

k(p)) and all variablesY i
j are pairwise distinct;

(iii) Ea consists ofk negative equality literalsαi 6≃ Xi, i = 1 . . . k, whereαi ∈
{Y 1

1 , . . . , Y p

k(p)}; (iv) Ec consists of zero or more negative equality literals of the form

α 6≃ β, whereα ∈ {Y 1
1 , . . . , Y p

k(p)} andβ is a constant; (v)Ed consists of zero or more

negative equality literals of the formα 6≃ β, whereα, β ∈ {Y 1
1 , . . . , Y p

k(p)}.
Finally, we transform the clauseEa ∨Ec ∨Ed ∨Dx ∨ A into an SQL query of the

formSELECT 〈columns〉 FROM 〈tables〉 WHERE 〈join conditions〉, where
〈columns〉 mapsXi to table columns according toEa, 〈tables〉 introduces aliases for
all ri (this is necessary because some ofri may coincide), and〈join conditions〉 is a
conjunction of joins reflecting the conditions fromEc andEd.

For a detailed algorithm for converting schematic answers to SQL, see [26])

6 A note on indexing Semantic Web documents with data
abstractions.

In the context of Semantic Web (SW), it is important to be ableto index distributed
semantic data description sets (SW documents, for simplicity), so that, given a semantic
query modulo some knowledge bases, we can load only the SW documents that are
potentially relevant to the query. In this section we brieflysketch a possible scheme for
such indexing that is compatible with our approach to deductive querying.

Conventional search engines index regular Web documents bywords appearing in
them. We cannot simply follow this example by indexing SW documents by the names
of objects, concepts and relations occurring in them. This is so because retrieval in
general may require reasoning, and thus the relevant documents may use no common
symbols with the query. For example, a query may request to find animals of bright
colours. If some SW document describes, e. g., pink elephants, it is relevant, but lex-
ically there is no overlap with the query. Only reasoning reveals the relation between
“http://zooontology.org/concept#elephant” and
“http://zooontology.org/concept#animal”, and between
“http://www.colors.org/concept#pink” and
“http://www.colors.org/concept#brightcolour”.

Note that conceptually there is hardly any difference between RDBs and, say, OWL
data description sets based on the Web: an RDB can bemodeledas a set of ground
atomic logical assertions, and, practically, an SW document is such a set. So, just like
we use abstractions to represent relational data compactlyin reasoning, we can use
abstractions to represent SW documents. For example, a potentially large SW docu-
ment introducing many pink elephants can be compactly represented by its abstraction
zoo:elephant(X) | zoo:elephant(X),

14

colors:hasColour(X, Y) | colors:hasColour(X, Y) and
colors:pink(X) | colors:pink(X).

It seems natural to use such abstraction clauses as indexes to the corresponding
SW documents in a semantic search engine. Then, the query answering process can be
organised as follows. As in the case of reasoning over RDB abstractions, a reasoner is
used to derive schematic answers to a given query, based on all available abstractions of
indexed SW documents. Each schematic answer to the query depends on some abstrac-
tion clauses. The documents associated with these clauses are potentially relevant to our
query, so we download them, and only them, into our local RDB for further processing.

Of course, the indexing scheme presented here is just a conceptual one. The devel-
opers have the flexibility to chose a concrete representation – for example, they may just
index by the URIs of concepts and relations, and only create the corresponding abstrac-
tion clauses when the reasoner is ready to inject them in the search space. There is also
a possibility of adjusting the degree of generality of abstraction clauses by adding some
ad hoc constraints. For example, the first of the abstractionclauses from the example
above can be replaced with the more specific
zoo:elephant(X) | zoo:elephant(X), pref(X,′′ http : //www.elephants.com/′′).
The ad hoc constraintpref(X,′′ http : //www.elephants.com/′′) requires the prefix
of the URIX to be ”htpp://www.elephants.com/”. The constraint is incompatible with,
e. g.,pref(X,′′ http : //www.rhinos.com/′′), so if our reasoner derives a clause with
these two constraints, it can safely discard it, thus improving the precision of indexing.

7 Related work.

We are not aware of any work that uses resolution-based reasoning in a way similar to
the one proposed in this paper, i. e., for incremental query rewriting based on the use
of complete query answering over database abstractions, implemented with constraints
over the concrete data.

In general, semantic access to relational databases is not anew concept. Some of
the work on this topic is limited to semantic access to, or semantic interpretation of
relational data in terms of Description Logic-based ontologies or RDF (see, e. g., [10, 6,
4]), or non-logical semantic schemas (see [28]). There is also a large number of projects
and publications on the use of RDB for storing and querying large RDF and OWL
datasets: see, e. g., [24, 17, 11–13], to mention just a few. The format of the paper does
not allow us to give a comprehensive overview of such work, sowe will concentrate
on research that tries to go beyond the expressivity of DL and, at the same time, is
applicable to legacy relational databases.

The work presented here was originally inspired by the XSTONE project [31]. In
XSTONE, a resolution-based theorem prover (a reimplementation of Gandalf, which
is, in particular, optimised for taxonomic reasoning) is integrated with an RDBMS by
loading rows from a database as ground facts into the reasoner and using them to answer
queries with resolution. The system is highly scalable in terms of expressiveness: it
accepts full FOL with some useful extensions, and also has parsers for RDF, RDFS and
OWL. We believe that our approach has better data scalability and can cope with very

15

large databases which are beyond the reach of XSTONE, mostlybecause our approach
obtains answers in bulk, and also due to the way we use highly-optimised RDBMS.

Papers [23] and [22] describe, albeit rather superficially,a set of tools for mapping
relational databases into OWL and semantic querying of the RDB. Importantly, the
queries are formulated as SWRL [3] rule bases. Although SWRLonly allows Horn rules
built with OWL concepts, properties and equality, its expressivity is already sufficient
for many applications. Given a semantic query in the form of aSWRL rule base, the
software generates SQL queries in order to extract some relevant data in the form of
OWL assertions and runs a rule engine on this data to generatefinal answers. So the
reasoning is, at least partially, sensitive to the amount ofdata. This gives us hope that
our approach can scale up better because the reasoning part of the process is completely
independent of the concrete data.

Another project, OntoGrate [14], uses an approach to deductive query answering,
which is based on the same ideas as ours: their FOL reasoner, OntoEngine [15], can be
used to rewrite original queries formulated in terms of someontology, into a finite set
of conjunctive queries in terms of the DB schema, which is then converted to SQL. For
this task, the reasoner usesbackward chaining with Generalised Modus Ponens[29],
which corresponds to negative hyperresolution on Horn clauses in the more common
terminology. A somewhat ad hoc form of term rewriting [21] isused to deal with equal-
ity. Termination is implemented by setting some limits on chaining, which allows them
to avoid incremental processing. We hope to go much further,mainly, but not only, by
putting our work on a solid theoretical foundation. In particular, we are paying atten-
tion to completeness. Since our approach is based on well-studied calculi, we hope to
exploit the large amount of previous research on completeness and termination, which
seems very difficult to do with the approach taken by OntoEngine. Although we are
very likely to make various concessions to pragmatics, we would like to do this in a
controllable and reproducible manner.

On the more theoretical side, it is necessary to mention two other connections. The
idea of using constraints to represent schematic answers isborrowed from Constraint
Logic Programming [18] and Constrained Resolution [8]. Also, the general idea of us-
ing reasoning for preprocessing expressive queries into a database-related formalism,
was borrowed from [20], where a resolution- and paramodulation-based calculus is used
to translate expressive DL ontologies into Disjunctive Datalog. This work also shares
a starting point with ours – the observation that reasoning methods that treat individu-
als/data values separately can not scale up sufficiently.

8 Future work.

Our future work will be mostly concentrated in the followingdirections:
Implementation and experiments.A proof-of-concept implementation has been

already created, based on a version of the Vampire prover [27], and two experiments
were done – one on a large instance of the LUBM benchmark [16] and another one on
the BioCyc [19] dataset (in OWL). This exploratory work willbe used to guide a more
comprehensive implementation effort, including the implementation of a front-end for
all first-order monotonic sublanguages of Derivation RuleML [2], an implementation

16

of a client-server Java API and tuning the reasoner for the task of schematic answer
derivation over RDB abstractions.

Equality treatment. If equality is present in our knowledge bases (e. g., in the
form of OWL number restrictions), we can extend the standardsuperposition calculus
to clauses with recording literals as we did with resolution. However, the completeness
proof does not easily transfer to such use of superposition.Therefore, one of our main
priorities now is to look for adjustments of the superposition calculus that would be
provably complete w. r. t. schematic answers, without beingtoo inefficient. An obvious
obstacle to generalisation-tolerance is the absence of paramodulations into variables in
the standard paramodulation-based calculi, so, for a start, we will try to use the speci-
ficity of reasoning over DB abstractions to eliminate the need for such inferences in
generalisation-tolerant variants of superposition.

Completeness with redundancy deletion.Static completeness, proven in Sec-
tion 3, is enough to guarantee that we will find all necessary answers only if our search
procedure generates absolutely all possible derivations in the given calculus. In prac-
tice, such approach is almost always inefficient. Typically, some criteria are applied to
detect redundant clauses and remove them from the current clause set (see, e. g., [5]).

It seems relatively easy to prove completeness of schematicanswer derivation pro-
cess in presence of the most important redundancy deletion technique: roughly, a clause
subsumed by another clause can be deleted from the current clause set. The main idea
for such a proof is that if subsumption removes an answer derivation from the search
space, the search space will still contain a structurally simpler derivation of the same
answer or a more general answer. Note that this is a property of generalisation-tolerant
calculi. However, if we want to deal with equality efficiently, we have to demonstrate
compatibility of our approach with thestandard redundancy criterion(see, e. g., [5,
21]).

Termination. Very often it is desirable that a query answering implementation ter-
minates on a given query having exhausted all solutions, e. g., for counting and aggrega-
tion of other kinds. We are interested in identifying combinations of practically relevant
fragments of FOL with reasoning methods and strategies, that guarantee termination.
For such fragments, complexity estimations may also be useful.

Acknowledgements.Many thanks to RuleML for supporting the publication, and
to Harold Boley for numerous productive discussions on the subject, especially for
drawing my attention to modern rule languages.

References

1. Rule Interchange Format WG Charter. http://www.w3.org/2005/rules/wg/charter.html.
2. The Rule Markup Initiative Web Site. http://www.ruleml.org/.
3. W3C SWRL Submission:. http://www.w3.org/Submission/SWRL/.
4. A.Ranganathan and Z. Liu. Information Retrieval from Relational Databases using Semantic

Queries. InProc. ACM CIKM, pages 820–821, 2006.
5. L. Bachmair and H. Ganzinger. Resolution Theorem Proving. In Hand. of Automated Rea-

soning, vol. I. 2001.
6. C. Bizer. D2RQ – Treating Non-RDF Databases as Virtual RDFGraphs. InISWC 2004.

17

7. Harold Boley. The RuleML Family of Web Rule Languages. InPPSWR06, 2006.
8. H.-J. Bürckert and W. Nutt. On Abduction and Answer Generation through Constrained

Resolution. Technical Report DFKI RR-92-51, 1992.
9. D. T. Burhans and S. C. Shapiro. Defining Answer Classes Using Resolution Refutation.

Journal of Applied Logic, 5:70–91, 2007.
10. D. Calvanese, G. De Giacomo, D. Lembo, M. Lenzerini, A. Poggi, and R. Rosati. MASTRO-

I: Efficient Integration of Relational Data through DL Ontologies. InDL-07, 2007.
11. D. Calvanese, G. De Giacomo, D. Lembo, M. Lenzerini, and R. Rosati. DL-Lite: Tractable

Description Logics for Ontologies. InAAAI’05, pages 602–607, 2005.
12. C. M. Chen, V. Haarslev, and J. Y. Wang. LAS: Extending Racer by a Large Abox Store. In

DL-2005.
13. J. Dolby, A. Fokoue, A. Kalyanpur, L. Ma, C. Patel, E. Schonberg, K. Srinivas, and X. Sun.

Efficient reasoning on large SHIN Aboxes in relational databases. 2007. (to appear).
14. D. Dou, P. LePendu, S. Kim, and P. Qi. Integrating Databases into the Semantic Web through

an Ontology-based Framework. InInternational Workshop on Semantic Web and Database
at ICDE 2006, 2006.

15. D. Dou, D. McDermott, and P. Qi. Ontology Translation on the Semantic Web.Journal of
Data Semantics, 2:35–37, 2005.

16. Y. Guo, J. Heflin, and Z. Pan. An Evaluation of Knowledge Base Systems for Large OWL
Datasets. InISWC 2004, pages 613–627, 2004.

17. I. Horrocks, L. Li, D. Turi, and S. Bechhofer. The Instance Store: Description Logic Rea-
soning with Large Numbers of Individuals. InDL’04, 2004.

18. J. Jaffar and M. J. Maher. Constraint Logic Programming:a Survey. Journal of Logic
Programming, 19(20):503–581, 1994.

19. Markus Krummenacker, Suzanne Paley, Lukas Mueller, Thomas Yan, and Peter D. Karp.
Querying and Computing with BioCyc Databases.Bioinformatics, 21(16):3454–3455, 2005.

20. B. Motik. Reasoning in Description Logics using Resolution and Deductive Databases. PhD
Thesis, 2006.

21. R. Nieuwenhuis and A. Rubio. Paramodulation-Based Theorem Proving. In A. Robinson
and A. Voronkov, editors,Handbook of Automated Reasoning, volume I. 2001.

22. M.J. O’Connor, R.D. Shankar, S.W. Tu, C. Nyulas, A.K. Das, and M.A. Musen. Efficiently
Querying Relational Databases Using OWL and SWRL. InRR 2007, 2007.

23. M.J. O’Connor, R.D. Shankar, S.W. Tu, C. Nyulas, D.B. Parrish, M.A. Musen, and A.K. Das.
Using Semantic Web Technologies for Knowledge-Driven Querying of Biomedical Data. In
AIME 07, 2007.

24. Z. Pan and J. Heflin. DLDB: Extending Relational Databases to Support Semantic Web
Queries. InWorkshop on Practical and Scaleable Semantic Web Systems, ISWC 2003, 2003.

25. R. Ramakrishnan and J. Gehrke.Database Management Systems, third edition. McGraw-
Hill, 2003.

26. A. Riazanov. Resolution-based Query Answering for Semantic Access to Relational
Databases: A Research Note. Preprint 0901.0339, ArXiv, January 2009.

27. A. Riazanov and A. Voronkov. The Design and Implementation of Vampire.AI Communi-
cations, 15(2-3):91–110, 2002.

28. N. Rishe. SemanticSQL: A Semantic Wrapper for Relational Databases.
http://n1.cs.fiu.edu/semantic.wrapper.pdf, 2004. (white paper).

29. S. Russel and P. Norvig.Artificial Intelligence: A Modern Approach, Second Edition.
Prentice-Hall, Inc., 2003.

30. T. Tammet. Gandalf.Journal of Automated Reasoning, 18(2):199–204, 1997.
31. T. Tammet, V. Kadarpik, H.-M. Haav, and M. Kaaramees. A Rule-based Approach to

Web-based (Database) Application Development. In7th International Baltic Conference
on Databases and Information Systems, pages 202–208, 2006.

18

