Pantethine

Introduction
Pantethine is the stable disulfate form of pantetheine, the metabolic substrate which constitutes the active part of coenzyme A molecules (CoA) and acyl carrier proteins (ACP). The reactive component of both CoA and ACP is not the pantothenic acid molecule but rather it is the sulf-hydryl (SH) group donated from cysteine. Although pantothenic acid is commonly known as vitamin B5, pantethine actually contains the SH molecule required for enzyme activity and provides a more metabolically active form of the vitamin.

Mechanism of Action
The metabolic activity of pantethine is probably due to its role in the synthesis of CoA and ACP. CoA is a cofactor in over 70 enzymatic pathways including fatty acid oxidation, carbohydrate metabolism, pyruvate degradation, amino acid catabolism, heme synthesis, acetylcholine synthesis, and phase II detoxification acetylation. ACP is an essential component of the fatty acid synthase complex required for fatty acid elongation.

While the exact mechanism of action of pantethine in normalizing parameters associated with dyslipidemia is unknown, several explanations have been proposed. Some authors have suggested pantethine might be capable of directly modulating the action of several enzymes involved in cholesterol synthesis.1-3

The efficacy of pantethine in normalizing parameters of dyslipidemia might also be due to its ability to increase CoA levels. Theoretically, if pantethine enhances the formation of CoA, the additional CoA might then combine with free acetyl groups to form acetyl-CoA. The acetyl-CoA could then be directed into the TCA cycle or beta-oxidation at the expense of cholesterol formation.

Clinical Applications
Hyperlipidemia: Oral supplementation with pantethine typically results in a tendency toward normalization of lipid values. Administration of pantethine typically results in a progressive decrease in total cholesterol, triglycerides, low density lipoprotein (LDL) cholesterol and apolipoprotein B (Apo-B) and an increase in high density lipoprotein (HDL) cholesterol and apolipoprotein A (Apo-A); however, depending on the type of lipidemia, results might vary (see Table 1).4-9

Platelet Lipid Composition and Fluidity: Pantethine administration has been shown to favorably affect parameters associated with platelet lipid composition and cell membrane fluidity.10,11 In diabetic patients, composition of platelets is characterized by a derangement in a wide variety of lipid concentrations and a higher microviscosity than in healthy platelets. Administration of pantethine is reported to normalize these values of fatty acids to control levels, and result in a concomitant reduction in hyperaggregation.12,13
Cataract Protection: In several animal models, preliminary studies have indicated pantethine can inhibit cataract formation.14-16

Detoxification: Acetylation reactions utilizing acetyl-CoA are an important component of the phase II detoxification system. The compounds typically metabolized by acetylation reactions include aliphatic amines (such as histamine and mescaline), aromatic amines (such as sulfonamide), hydrazine and hydrazide, and certain amino acids (such as phenylcysteine). Because of its biochemical position as the most stable supplemental form of an immediate precursor to CoA, pantethine might be able to play an important role in the metabolism of some xenobiotic compounds.

Impact on Adrenal Function: Pantethine appears to exert a positive influence on some indicators of adrenal function. Administration of pantethine to 20 humans with a variety of clinical conditions was reported to buffer the increase in 24-hour urinary 17-hydroxycorticosteroids and plasma 11-hydroxycorticosteroids stimulated by a loading dose of adrenocorticotropic hormone.17

Toxicology

Although digestive disturbances have occasionally been reported in the literature, the majority of researchers have commented on the complete freedom from side-effects and subjective complaints experienced by individuals taking pantethine.

Dosage

The most common oral dosage used in the treatment of dyslipidemia is 300 mg three times per day.

References

