REVIEWS: CURRENT TOPICS

Antiangiogenic properties of natural polyphenols from red wine and green tea
Min-Ho Oaka,b, Jasser El Bedouia, Valérie B. Schini-Kertha,*

aPharmacologie et Physico-Chimie des Interactions Cellulaires et Moléculaires, UMR CNRS 7034, Faculté de Pharmacie, Université Louis Pasteur de Strasbourg, F-67401 Illkirch, France
bResearch and Development Center, Yangji Chemicals, An-San, South Korea

Received 11 May 2004; received in revised form 20 September 2004; accepted 30 September 2004

Abstract

Epidemiological studies have indicated that regular consumption of red wine and green tea is associated with a reduced risk of coronary heart disease and tumor progression. The development of tumors and of atherosclerosis lesions to advanced plaques, which are prone to rupture, is accelerated by the formation of new blood vessels. These new blood vessels provide oxygen and nutrients to neighboring cells. Therefore, recent studies have examined whether red wine polyphenolic compounds (RWPCs) and green tea polyphenols (GTPs) have antiangiogenic properties.

In vitro investigations have indicated that RWPCs and GTPs are able to inhibit several key events of the angiogenic process such as proliferation and migration of endothelial cells and vascular smooth muscle cells and the expression of two major proangiogenic factors, vascular endothelial growth factor (VEGF) and matrix metalloproteinase-2, by both redox-sensitive and redox-insensitive mechanisms. Antiangiogenic properties of polyphenols have also been observed in the chick embryo chorioallantoic membrane since the local application of RWPCs and GTPs strongly inhibited the formation of new blood vessels. Moreover, intake of resveratrol or green tea has been shown to reduce corneal neovascularization induced by proangiogenic factors such as VEGF and fibroblast growth factor in mice.

The ability of RWPCs and GTPs to prevent the formation of new blood vessels contributes, at least in part, to explain their beneficial effect on coronary heart disease and cancer. This review focuses on the antiangiogenic properties of natural polyphenols and examines underlying mechanisms.

© 2005 Elsevier Inc. All rights reserved.

Keywords: Polyphenol; Angiogenesis; Atherosclerosis

1. Introduction

Epidemiological studies have suggested an inverse relation between regular consumption of natural polyphenols, particularly red wine and green tea, and the risk of coronary heart disease and cancer [1–7]. The beneficial effect of red wine and green tea on coronary diseases might be attributable, in part, to their ability to retard the progression of early atherosclerotic lesions, as observed in human coronary arteries at childhood, to advanced plaques, which are prone to rupture with superimposed thrombosis as suggested by studies with experimental models of atherosclerosis [8–12]. Since polyphenolic compounds from red wine and green tea such as quercetin and catechin were also able to prevent the progression of atherosclerotic lesions, polyphenols present in wine and green tea account, at least in part, for the protective effect of moderate wine and green tea consumption [8–11].

The formation and progression of atherosclerotic lesions are characterized by excessive vascular remodeling with accumulation of cells and lipids within the intimal layer of the pathologic artery [13]. Recent experimental and human studies have shown an increased number of adventitial vasa vasorum in advanced coronary atherosclerosis [14–17]. Moreover, a correlation between the extent of vasa vasorum and the severity of atherosclerotic plaques has been found in human coronary arteries [17]. Mechanical injury of the adventitial layer has also been shown to stimulate the formation of new blood vessels in injured arteries [18–20].
These observations have led to the proposition that adventitial vasa vasorum contribute to the development and progression of coronary atherosclerosis by providing oxygen and nutrients and possibly also of such complications as intimal hemorrhage and plaque rupture since these new blood vessels are fragile. Consistent with such a concept, two angiogenesis inhibitors, endostatin and TNP-470, reduced intimal neovascularization and plaque growth in apolipoprotein E-deficient mice [21].

During the angiogenic process, new blood vessels develop from the existing microvascular bed. The initial event involves dilatation of an existing blood vessel followed by an increase in vascular permeability and the degradation of extracellular matrices. Thereafter, endothelial cells (ECs) can migrate and proliferate, and these events are followed by maturation of new blood vessels. The angiogenic process is controlled by two major proangiogenic factors, matrix metalloproteinases (MMPs), which degrade extracellular matrices, and vascular endothelial growth factor (VEGF), which strongly stimulates EC migration and proliferation and the formation of new blood vessels.

Therefore, recent investigations have examined the possibility that natural polyphenols from red wine and green tea prevent the development of atherosclerotic lesions by inhibiting the formation of new blood vessels. Alternatively, the beneficial effect of natural polyphenols might also be related to their ability to up-regulate the level of high-density lipoprotein and to prevent oxidation of low-density lipoprotein [22,23], activation of platelets [24,25] and expression of prothrombotic and proatherosclerotic molecules such as monocyte chemoattractant protein-1 [26] in vascular cells. This review focuses on recent in vitro and in vivo experimental evidence showing that natural polyphenols, particularly those from green tea and red wine, have antiangiogenic properties and discusses underlying mechanisms.

2. Polyphenols inhibit the expression of VEGF

Vascular endothelial growth factor, a major proangiogenic factor [28], has been suggested to contribute to intimal neovascularization in atherosclerosis. Indeed, VEGF is strongly expressed in human atherosclerotic plaques [29,30] and the number of VEGF-positive cells increases gradually with the progression of lesions [29]. The cellular sources of VEGF in human atherosclerotic plaques are predominantly vascular smooth muscle cells (VSMCs) and, to some extent, foamy macrophages [29]. In addition to inducing a proangiogenic response, VEGF also stimulates gene expression of several endothelial proteins involved in prothrombotic and proatherosclerotic responses including tissue factor [31], adhesion molecules [32] and monocyte chemoattractant protein-1 [33]. Moreover, VEGF induces monocyte procoagulant activity and promotes monocyte chemotaxis [31]. Thus, VEGF is likely to play an important role in the formation of new blood vessels and in the expression of proinflammatory and prothrombotic molecules in atherosclerotic plaques.

We have recently reported that red wine polyphenolic compounds (RWPCs) strongly inhibit growth factor-induced VEGF expression in VSMCs at concentrations that are likely to be achieved in blood after moderate consumption of red wine [34]. These investigations have indicated that the stimulatory effect of growth factors such as PDGF_AB on VEGF expression is a redox-sensitive event (Fig. 1) [34,35].

The major enzymatic source of reactive oxygen species (ROS) in VSMCs in response to growth factors is the nicotinamide adenine dinucleotide phosphate (NADPH) oxidase. Indeed, exposure of VSMCs to thrombin or PDGF_AB caused the generation of substantial amounts of ROS via activation of a p22phox-containing NADPH oxidase [35–37]. Moreover, prevention of the generation

![Fig. 1. Red wine polyphenolic compounds inhibit VEGF expression in VSMCs. Growth factors such as PDGF_AB strongly stimulate the expression of VEGF via the formation of intracellular ROS. The formation of ROS by the NADPH oxidase mediates activation of the redox-sensitive p38 MAP kinase pathway, which, in turn, activates hypoxia-inducible factor-1 alpha, a key transcription factor regulating VEGF expression. Red wine polyphenolic compounds inhibit the stimulatory effect of PDGF_AB most likely by preventing the formation of intracellular ROS and phosphorylation of p38 MAP kinase. DPI, diphenylene iodonium; NAC, N-acetyl cysteine; Vit C, vitamin C.](image-url)
Polyphenols from red wine and green tea have been shown to have antioxidant properties most likely due to their ability to directly scavenge ROS such as hydroxyl radical and superoxide anion [22,39,40] and to inhibit the expression of NADPH oxidase [41] and the activity of xanthine oxidase [42]. In addition, polyphenols can also increase the activity of catalase and glutathione peroxidase [43], which detoxify \(\text{H}_2\text{O}_2 \) by converting it to \(\text{O}_2 \) and \(\text{H}_2\text{O} \).

Consistent with their antioxidant properties, the inhibitory effect of RWPCs on PDGF\(_{4B} \)-induced expression of VEGF was associated with the total prevention of the formation of ROS [34]. In addition, RWPCs also significantly reduced the \(\text{H}_2\text{O}_2 \)-stimulated release of VEGF in VSMCs [34]. Altogether, these findings suggest that the inhibitory effect of RWPCs on the expression of VEGF involves, at least in part, their antioxidant properties.

However, although antioxidants such as vitamin C, N-acetylcysteine and diphenylene iodonium completely prevented the formation of ROS in VSMCs, they only partially reduced the PDGF\(_{4B} \)-induced expression of VEGF [34]. These findings suggest that the stimulatory effect of PDGF\(_{4B} \) on VEGF expression involves both redox-sensitive and redox-insensitive mechanisms. Consistent with such an idea, RWPCs caused a sustained inhibition of PDGF\(_{4B} \)-induced VEGF expression that lasts several hours after their removal from the incubation medium, a condition that was not associated with an impaired formation of ROS [34]. Such a long-lasting effect of RWPCs might reflect their association with VSMCs and/or the possibility that RWPCs induce the production of one or several peptide(s)/protein(s), which, in turn, contribute(s) to prevent the expression of VEGF via redox-insensitive mechanisms.

Previous studies have shown that PDGF\(_{4B} \) causes activation of several redox-sensitive protein kinases including members of the mitogen-activated protein kinases such as p38 MAPK, ERK1/2 and JNK and also PI3-kinase/Akt, which have all been involved in the up-regulation of VEGF expression in several cell types [44–46]. However, only the activation of the p38 MAPK pathway seems to play a major role in PDGF\(_{4B} \)-induced release of VEGF in VSMCs. Indeed, PDGF\(_{4B} \)-induced release of VEGF was abolished by SB203580, a specific inhibitor of p38 MAPK, slightly reduced by PD98059, an inhibitor of MEK, and not affected by wortmannin and JNKI, inhibitors of PI3-kinase and JNK, respectively [34]. Reactive oxygen species appear to mediate the stimulatory effect of PDGF\(_{4B} \) on p38 MAPK activation since the response was prevented by several antioxidants and \(\text{H}_2\text{O}_2 \) is a strong activator of p38 MAPK [34]. Red wine polyphenolic compounds strongly inhibited PDGF\(_{4B} \)-induced p38 MAPK phosphorylation without affecting that of ERK1/2, JNK and Akt in VSMCs. Although RWPCs have been shown to inhibit PDGF\(_{4B} \) binding to the PDGF-\(\beta \)-receptor and PDGF-\(\beta \)-receptor phosphorylation [47], such an explanation is unlikely to account for the impaired expression of VEGF because the PDGF\(_{4B} \)-induced phosphorylation of ERK1/2, JNK and Akt was not affected by RWPCs. Taken together, RWPCs are potent inhibitors of growth factor-induced VEGF expression in VSMCs partly by the selective prevention of the redox-sensitive activation of the p38 MAPK pathway, which leads to VEGF gene expression.

In addition, green tea polyphenols (GTPs) and epigallocatechin-3-gallate (EGCG) have also been shown to decrease VEGF production in head and breast carcinoma cells by inhibiting epidermal growth factor receptor-related pathways of signal transduction [48,49] such as the constitutive activation of Stat3 and NF-\(\kappa \)B but not ERK1/2 or Akt [48].

3. Polyphenols inhibit MMP-2 expression and activity

The structural reorganization of the arterial wall during atherogenesis is controlled by MMPs, a family of structurally related zinc endopeptidases that are capable of degrading components of the extracellular matrix [50,51]. Recent findings have indicated that the gelatinases, MMP-2 and MMP-9, are dominant MMPs in vascular tissues and that they play an important role in the turnover of basement membrane type IV collagen during angiogenesis and formation of atherosclerotic plaques [52,53], leading to an increased risk of cardiovascular events. Besides MMP-2 and MMP-9, vascular cells also produce MMP-1, -3 and membrane type (MT) 1 MMP, which have all been involved in the destabilization and rupture of atherosclerotic plaques (see for review, Refs. [51,54]).

Matrix metalloproteinase-2 is expressed abundantly in atherosclerotic and restenotic lesions and has been suggested to play a key role in the degradation of the basement membrane, thereby promoting migration of ECs and VSMCs [55].

Matrix metalloproteinase-2 is unique among the MMPs in that it does not possess the propeptide sequence that is susceptible to proteolytic activation by other proteases such as plasmin or trypsin [53]. Activation of the precursor of MMP-2, pro-MMP-2, takes place predominantly at the cell surface and is mediated by MT1-MMP [50,53,54]. The following model of pro-MMP-2 activation by MT1-MMP and tissue inhibitor of metalloproteinase-2 (TIMP-2) has been proposed (see for review, Ref. [50]). MT1-MMP forms a dimer or multimers on the cell surface through interaction of the hemopexin domains. Pro-MMP-2 forms a tight complex with TIMP-2 through their C-terminal domains, therefore permitting the N-terminal inhibitory domain of TIMP-2 in the complex to bind to MT1-MMP.
on the cell surface [50]. Binding of pro-MMP-2 to the MT1-MMP/TIMP-2 complex localizes the pro-MMP-2 on the cell surface, and activation is initiated by the proteolytic action of a second TIMP-2-free MT1-MMP molecule at the Asn37–Leu38 bond of the MMP-2 propeptide [50]. Alternatively, MT1-MMP inhibited by TIMP-2 can act as a receptor of pro-MMP-2. It has been suggested that the maximum enhancement of pro-MMP-2 activation is observed at a TIMP-2/MT1-MMP ratio of 0.05, indicating that a large number of free MT1-MMPs may surround the ternary complex of pro-MMP-2–TIMP-2–MT1-MMP for effective pro-MMP-2 activation [56]. Pro-MMP-2 can be activated by other MT-MMPs in several cell types. These include MT2-MMP [57], MT3-MMP [58], MT5-MMP [59,60] and MT6-MMP [61]. Interestingly, pro-MMP-2 activation by MT2-MMP is direct and independent of TIMP-2 [62].

Recent in vitro and in vivo studies have revealed a major role for gelatinases in angiogenesis. When ECs are cultured on Matrigel, the formation of a tubular network is induced by the addition of recombinant MMP-2 in a dose-dependent manner and this response is inhibited by a neutralizing antibody directed against MMP-2 and by a tissue inhibitor of metalloproteinases, TIMP-2 [63]. Capillary ECs cultured on two-dimensional type I collagen gels produce low, constitutive levels of pro-MMP-2 with little endogenous activation of the protease. However, when placed in three-dimensional type I collagen gels, there is a marked increase in the total amount of MMP-2 mRNA and protein [64]. Matrix metalloproteinase-2 activity can also generate extracellular matrix degradation fragments, leading to signals required for cell survival and migration [65]. In addition, the corneal neovascular area induced by bFGF in MMP-2-deficient mice is markedly reduced when compared with that of wild-type littermates [66].

Recent studies have indicated that RWPCs and GTPs strongly inhibit VSMC invasion induced by growth factors such as thrombin and PDGFα_B [67,68]. The inhibitory effect of polyphenols is associated with a concentration-dependent inhibition of thrombin-induced MMP-2 activation (Fig. 2) [69,70]. In addition, although thrombin did not affect the expression level of MT1-MMP both at the mRNA and protein levels, the serine protease increased markedly the cell-associated MT1-MMP activity. Red wine polyphenolic compounds and GTPs inhibited MT1-MMP activity when added directly to the enzymatic assay. Altogether, these findings suggest that natural polyphenols from red wine and green tea are able to prevent activation of MMP-2 by directly inhibiting the activity of membrane-bound MT1-MMP. Consistent with such an idea, catechin, a polyphenolic compound, has been shown to prevent MT1-MMP-dependent activation of MMP-2 in cancer cells [71]. The inhibitory effect of RWPCs is not observed in VSMCs pretreated with RWPCs before the enzymatic determination of cell-associated MT1-MMP activity, indicating that RWPCs most likely inhibit the catalytic activity of MT1-MMP in a reversible manner [70]. At present, the active polyphenolic compounds of the red wine extract and the green tea extract still remain unclear. However, previous studies have shown that resveratrol and EGCG strongly inhibit MMP-2 expression and activity in different types of cells [67,72–74].

Fig. 2. Red wine polyphenolic compounds and GTPs inhibit MMP-2 expression and directly the activity of MT1-MMP. Thrombin stimulates the expression of cell-associated pro-MMP-2 protein and the activity of MT1-MMP via protease-activated receptor-independent mechanisms in VSMCs. These effects result in the formation of active MMP-2 and VSMC invasion. Red wine polyphenolic compounds and GTPs inhibit the expression of MMP-2 and the conversion of pro-MMP-2 into active MMP-2 by directly inhibiting MT1-MMP activity, thereby preventing VSMC invasion. MMP-2, matrix metalloproteinase-2; MT1, membrane type 1 matrix metalloproteinase; TIMP-2, tissue inhibitor of metalloproteinase-2; GM6001, a broad-spectrum MMP inhibitor; Hirudin, a potent and specific inhibitor of thrombin.
4. Polyphenols prevent migration and proliferation of ECs and VSMCs

Proliferation and migration of ECs and VSMCs are major events in the angiogenic process and are also hallmarks of numerous cardiovascular diseases including atherosclerosis and restenosis. Several studies have indicated that natural polyphenols are able to inhibit proliferation and migration of vascular cells [75,76]. Resveratrol has been shown to prevent the progression of ECs through the S and G2 phases, and this effect is accompanied by an increased expression of the tumor suppressor gene protein p53 and an elevation of the level of the cyclin-dependent kinase inhibitor p21(WAF1/CIP1) [77]. Delphinidin strongly inhibited EC proliferation and migration in cyclin D1- and cyclin A-dependent pathways in response to VEGF [78,79]. Green tea polyphenols also significantly reduced EC proliferation in a dose-dependent manner and caused the accumulation of cells in the G1 phase without affecting cell viability [80]. In addition, EGCG suppressed EC proliferation and migration by inducing apoptosis through mitochondrial depolarization, activation of caspase-3 and reduction of binding of VEGF to its receptors in human ECs [81,82].

Not only ECs but also proliferation and migration of VSMCs can be affected by RWPCs and GTPs. Iijima et al. [83] have reported that RWPCs strongly inhibit proliferation and migration of VSMCs; both these responses are associated with the down-regulation of cyclin A gene expression through the decreased expression of transcription factors CREB and ATF-1 and with the specific inhibition of p38 MAPK and PI3-kinase/Akt pathways. In addition, GTPs and EGCG also induced apoptosis of proliferating VSMCs in a p53- and NF-κB-dependent manner.

5. In vivo antiangiogenic properties of polyphenols

It is well established that neovascularization occurs in atherosclerotic plaques of humans [14,17] and also promotes the progression of tumors [84]. Although polyphenols from green tea and red wine showed strong antiangiogenic properties in several in vitro experiments, few studies have investigated their antiangiogenic properties in vivo. The local application of RWPCs and GTPs to the chick embryo chorioallantoic membrane (CAM) strongly inhibited angiogenesis as indicated by a marked reduction in the number and length of small blood vessels after a 48-h incubation period (Fig. 3) [85,86]. Moreover, previous studies have indicated that drinking resveratrol, a polyphenolic compound found in wine, significantly inhibited corneal neovascularization in mice induced by VEGF and bFGF [87]. Epigallocatechin-3-gallate from green tea also suppressed the proliferation of ECs and the formation of new blood vessels in the CAM assay [86]. In addition, drinking tea significantly prevented VEGF-induced corneal neovascularization in a mouse model [86]. It has been also reported that resveratrol can inhibit tumor growth and tumor-induced neovascularization in vivo [88].

6. Discussion and conclusion

The molecular mechanism of the in vivo antiangiogenic properties of red wine- and green tea-derived polyphenolic compounds remains unclear, but it may be due to their ability to inhibit several key events of the angiogenic process such as proliferation and migration of ECs and VSMCs and the expression of VEGF and activation of MMP-2.

The bioavailability of GTPs and RWPCs is an important determinant in understanding their biological activities.
Lack of understanding on this issue has led to excessive claims regarding the in vivo biological activity of natural polyphenols based on extrapolation from in vitro studies. The absorption of only very few red wine compounds has been studied to date, and absorption of even fewer compounds has been studied within a wine matrix. Despite these limitations, flavanols, flavonols, anthocyanins and nonflavonoid stilbenes in red wine and green tea have been shown to be absorbed [89–93]. The inhibitory effect of nonflavonoid stilbenes in red wine and green tea have been studied to date, and absorption of even fewer polyphenols based on extrapolation from in vitro studies. Despite these limitations, flavanols, flavonols, anthocyanins and nonflavonoid stilbenes in red wine and green tea have been shown to be absorbed [89–93]. The inhibitory effect of RWPCs on proangiogenic responses is detected at concentrations as low as 3 μg/ml [34,83]. Although the concentration of RWPCs in blood after intake of red wine remains unknown, a previous study has indicated that intake of 100 ml of red wine by healthy volunteers caused an increase in plasma concentration of polyphenolic monomers of 2.5 μg/ml (gallic acid equivalents) [89]. The degree of availability of GTPs is still under debate. Recent studies have demonstrated that a small percentage of the per os-ingested green tea catechins appears in blood [90–93]. Lee et al. [90] have indicated that the mean peak plasma EGCG level is about 0.17 μM after drinking the equivalent of two cups of tea by human volunteers. Moreover, a receptor for EGCG has been identified in human cancer cells [94]. In this type of cells, the inhibitory effects of EGCG are mediated by the 67-kDa laminin receptor with a Kd value of about 40 nM.

The concentration of EGCG, which showed antiangiogenic effects in a mouse corneal model, was in the range of 0.1–0.3 μM [86]. Thus, the inhibitory effect of RWPCs and GTPs on proangiogenic responses is likely to be reached in blood after moderate consumption of red wine and green tea.

In conclusion, several recent studies have indicated that RWPCs and GTPs have in vitro and in vivo antiangiogenic properties by inhibiting the expression of two strong proangiogenic factors, VEGF and MMP-2, and also by preventing the proliferation and migration of ECs and VSMCs. The antiangiogenic properties of RWPCs and GTPs might be considered in the reduced risk of coronary heart diseases and cancer mortality following chronic consumption of moderate amounts of red wine and green tea.

Acknowledgment

This review was supported in part by ONIVINS (French Ministry of Agriculture) and the Institut Européen Vin et Santé des Régions Viticoles (France).

References

[63] Schnaper HW, Grant DS, Stetler-Stevenson WG. Type IV collagenase(s) and TIMPs modulate endothelial cell morphogenesis in vitro. J Cell Physiol 1993;156:235–46.

